An Exploratory Method for Solving
the Stationary Schrödinger Equation

Norichika Matsuki

3-9-34, Fujisaki, Narashino-shi, Chiba 275-0017, Japan
n-matsuki@lime.plala.or.jp

Copyright © 2013 Norichika Matsuki. This is an open access article distributed under
the Creative Commons Attribution License, which permits unrestricted use, distribution,
and reproduction in any medium, provided the original work is properly cited.

Abstract
In this paper, we propose a new numerical method for obtaining the
ground state solution of the stationary Schrödinger equation by using
the Monte Carlo integration.

Mathematics Subject Classification: 81Q05, 90C26

Keywords: Schrödinger equation, Global optimization, Monte Carlo in-
tegration

1 Introduction

Let H be the Hamiltonian for N electrons with position vectors $\{ r_i \}$ and M
nuclei with position vectors $\{ R_A \}$ and atomic numbers $\{ Z_A \}$:

$$
-H = \sum_{i=1}^{N} \frac{\nabla_i^2}{2} - \sum_{1 \leq i \leq N} \left(\sum_{1 \leq A \leq M} \frac{Z_A}{|r_i - R_A|} \right) + \sum_{1 \leq i < j \leq N} \frac{1}{|r_i - r_j|}.
$$

For simplicity, we deal with the closed-shell Slater determinant

$$
\Psi = |\psi_1 \alpha \psi_1 \beta \cdots \psi_{N/2} \alpha \psi_{N/2} \beta|,
$$

where α, β are spin functions. The electronic energy of this system is

$$
\langle \Psi | H | \Psi \rangle = 2 \sum_{i=1}^{N} \int \psi_i^*(r) \left(-\frac{1}{2} \nabla^2 - \sum_{1 \leq A \leq M} \frac{Z_A}{r_i A} \right) \psi_i(r) dr
$$
\[
+2 \sum_{1 \leq i, j \leq N} \int \int \psi_i^*(r) \psi_i(r) \frac{1}{|r' - r|} \psi_j^*(r') \psi_j(r') dr dr' \\
- \sum_{1 \leq i, j \leq N} \int \int \psi_i^*(r) \psi_j(r) \frac{1}{|r' - r|} \psi_j^*(r') \psi_i(r') dr dr'
\]

(e.g., [3]). We further put

\[
\psi_i = \sum_{k=1}^{n_i} c_{ik} (x - x_{0A_i})^{s_{ik}} (y - y_{0A_i})^{t_{ik}} (z - z_{0A_i})^{u_{ik}} \exp(-\alpha_{ik} |r - R_{A_i}|^2),
\]

where \(r = (x, y, z) \) and \(R_{A_i} = (x_{0A_i}, y_{0A_i}, z_{0A_i}) \). Then it follows that \(\langle \Psi | H | \Psi \rangle / \langle \Psi | \Psi \rangle \) is the rational function of

\[
c_{ik}, \alpha_{ik}^{1/4}, \sqrt{\alpha_{i_1 k_1} + \alpha_{i_2 k_2}}, \sqrt{\frac{1}{\alpha_{i_1 k_1} + \alpha_{i_2 k_2}} + \frac{1}{\alpha_{i_3 k_3} + \alpha_{i_4 k_4}}},
\]

and the functions of the forms

\[
\exp\left(-\frac{b\alpha_{i_1 k_1} \alpha_{i_2 k_2}}{\alpha_{i_1 k_1} + \alpha_{i_2 k_2}}\right), \int_0^1 u^{2\nu} \exp(-b(\alpha_{i_1 k_1} + \alpha_{i_2 k_2}) u^2) du,
\]

\[
\int_0^1 u^{2\nu} \exp\left(-\frac{b u^2}{1/(\alpha_{i_1 k_1} + \alpha_{i_2 k_2}) + 1/(\alpha_{i_3 k_3} + \alpha_{i_4 k_4})}\right) du
\]

(e.g., [1]). The aim of this paper is to propose a new method for evaluating \(\{c_{ik}, \alpha_{ik}\} \) that minimize \(\langle \Psi | H | \Psi \rangle / \langle \Psi | \Psi \rangle \).

2 Preliminaries

We write \(\{p_1, \ldots, p_m\} = \{c_{ik}\} \cup \{\alpha_{ik}\} \) and \(\omega(p_1, \ldots, p_m) = \langle \Psi | H | \Psi \rangle / \langle \Psi | \Psi \rangle \). It is easily seen that \(\omega(p_1, \ldots, p_m) \) has the following properties.

Remark 2.1 Let \(P \) be an \(m \)-dimensional rectangle, let \(S_1 \) be the set of points at which \(\omega(p_1, \ldots, p_m) \) is continuous but not differentiable, and let \(S_2 \) be \(\{(p_1, \ldots, p_m) : \|\omega(p_1, \ldots, p_m)\| = \infty\} \). Then

(i) \(\omega(p_1, \ldots, p_m) \) is analytic on \(P \setminus (S_1 \cup S_2) \).

(ii) For \(s \in S_1 \), there are \(\epsilon, \delta (\epsilon < \delta) \), and \(t = (q_1, \ldots, q_m) \in P \setminus (S_1 \cup S_2) \) such that

\[
|s - t| < \delta, \ |\omega(s) - \omega(t)| < \epsilon.
\]

\[
I(t, \epsilon) = [q_1, q_1 + \epsilon] \times \cdots \times [q_m, q_m + \epsilon] \subset P \setminus (S_1 \cup S_2).
\]

Our basic tool is the following theorem.
Theorem 2.2 Let \(r \) be an even number greater than \(m \). Then \(\omega(p_1, \ldots, p_m) - E = 0 \) has solutions in \(P = [a_1, b_1] \times \cdots \times [a_m, b_m] \) if and only if

\[
\int_P \frac{dp_1 \cdots dp_m}{|\omega(p_1, \ldots, p_m) - E|^r} = \infty.
\]

Proof. Suppose that \(\omega(s) - E = 0 \) for \(s \in P \setminus (S_1 \cup S_2) \). Then we have

\[
\int_G \frac{dp_1 \cdots dp_m}{|\omega(p_1, \ldots, p_m) - E|^r} = \infty,
\]

where \(G \) is a rectangle satisfying \(s \in G \subset P \setminus (S_1 \cup S_2) \) [2].

Next, suppose that \(\omega(s) - E = 0 \) for \(s \in S_1 \). Take \(\epsilon \) and \(t = (q_1, \ldots, q_m) \in P \setminus (S_1 \cup S_2) \) satisfying (1) and (2). By the Taylor expansion of \(\omega(p_1, \ldots, p_m) - E \), we have

\[
\omega(p_1, \ldots, p_m) - E = \omega(q_1, \ldots, q_m) - E + \sum_{i=1}^{m} (p_i - q_i) f_i
\]

near \(t \), where \(f_1, \ldots, f_m \) are analytic functions. Hence

\[
\int_{I(t, \epsilon)} \frac{dp_1 \cdots dp_m}{|\omega(p_1, \ldots, p_m) - E|^r} > \int_{I(t, \epsilon)} \frac{dp_1 \cdots dp_m}{(\epsilon + \epsilon \sum_{i=1}^{m} |f_i|)^r} > \frac{1}{\epsilon^{r-m}(1+C)^r} \to \infty \quad \text{(as} \ \epsilon \to 0),
\]

where \(C \) is a constant satisfying \(C > \max_{x \in I(t, \epsilon)} \{\sum_{i=1}^{m} |f_i(x)|\} \).

Conversely, if \(\omega(p_1, \ldots, p_m) - E = 0 \) has no solution in \(P \), then we have

\[
\int_P \frac{dp_1 \cdots dp_m}{|\omega(p_1, \ldots, p_m) - E|^r} < \infty.
\]

By the Monte Carlo method, we can estimate

\[
F(P, E) = \int_P \frac{dp_1 \cdots dp_m}{|\omega(p_1, \ldots, p_m) - E|^r} \approx \frac{\prod_{i=1}^{m} (b_i - a_i)}{L} \sum_{j=1}^{L} \frac{1}{|\omega(s_j) - E|^r},
\]

where \(s_1, \ldots, s_L \) are points selected at random in \(P \). If \(F(P, E) \) is extremely large, then we conclude that \(\omega(p_1, \ldots, p_m) - E = 0 \) has solutions in \(P \).

3 Algorithm

The procedure to evaluate \(p_1, \ldots, p_m \) that minimize \(\omega(p_1, \ldots, p_m) \) is as follow:
Step 1: Divide the interval \([E', E''\) expected to contain the minimum of \(\omega(p_1, \ldots, p_m)\) into \(n\) equal subintervals \([E_0 (= E'), E_1, \ldots, [E_{n-1}, E_n (= E'')\)]\).

Step 2: Select the minimum of \(\{E_i : F(P, E_i) > D\}\). We denote by \(E_k\) the minimum. Here \(D\) is a large number, which is empirically given.

Step 3: Repeat Steps 1-2 for \([E_{k-1}, E_k\)].

Step 4: Repeat Steps 1-3 until the subintervals arrive at the prescribed precision. We denote by \(E\) the final value.

Step 5: Divide \([a_1, b_1\) into \(n\) equal subintervals \([a_{10} (= a_1, a_{11}], \ldots, [a_{1n-1}, a_{1n} (= b)]\).

Step 6: Estimate \(F(P, E)\) for each \(P_i = [a_{i1-1}, a_{i1}] \times [a_2, b_2] \times \cdots \times [a_m, b_m]\) and select \([a_{i1-1}, a_{i1}]\) that gives the maximum of \(\{F(P_i, E)\}\).

Step 7: Repeat Steps 5-6 for \([a_{1i-1}, a_{1i}]\).

Step 8: Repeat Steps 5-7 until the subintervals arrive at the prescribed precision. We denote by \([a_{1t-1}, a_{1t}]\) the final subinterval.

Step 9: Substitute \(q_1 = (a_{1t-1} + a_{1t})/2\) for \(p_1\) in \(\omega(p_1, \ldots, p_m)\).

Step 10: Set \(P = [a_2, b_2] \times \cdots \times [a_m, b_m]\) and

\[
F(P, E) = \int_P \frac{dp_2 \cdots dp_m}{|\omega(q_1, p_2, \ldots, p_m) - E|^r},
\]

where \(r\) is an even number greater than \(m - 1\).

Step 11: Repeat Steps 5-10 for \(p_2, \ldots, p_{m-1}\) and Steps 5-9 for \(p_m\).

References

Received: June 2, 2013