Bounds for the Identric Mean in Terms of One-Parameter Mean

Ying-Qing Song
School of Mathematics and Computation Science
Hunan City University
Yiyang, Hunan, 413000, P. R. China

Wei-Feng Xia
School of Teacher Education
Huzhou Teachers College
Huzhou, Zhejiang, 313000, P. R. China

Xu-Hui Shen
College of Nursing, Huzhou Teachers College
Huzhou, Zhejiang, 313000, P. R. China

Yu-Ming Chu
Department of Mathematics
Huzhou Teachers College
Huzhou, Zhejiang, 313000, P. R. China

Copyright © 2013 Ying-Qing Song et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Abstract

For $p \in \mathbb{R}$ the p-th one-parameter mean $J_p(a, b)$ of two positive

1This work was supported by the Natural Science Foundation of China (Nos. 11071069 and 11171307) and the Natural Science Foundation of Zhejiang Province (Nos.LY13H070004 and LY13A010004).

2Corresponding author. e-mail: chuyuming@hutc.zj.cn
numbers \(a\) and \(b\) with \(a \neq b\) is defined by
\[
J_p(a, b) = \begin{cases}
\frac{p(a^{p+1} - b^{p+1})}{(p+1)(a^p - b^p)}, & p \neq 0, -1, \\
\frac{a-b}{a^p - b^p}, & p = 0, \\
\frac{a-b}{a^p - b^p}, & p = -1.
\end{cases}
\] (1.1)

In this article, we answer the question: What are the greatest value \(\alpha\) and the least value \(\beta\), such that the double inequality
\[J_\alpha(a, b) < I(a, b) < J_\beta(a, b)\]
holds for all \(a, b > 0\) with \(a \neq b\)? Here \(I(a, b) = \frac{1}{e} \left(\frac{a}{b} \right)^{\frac{1}{a-b}}\) denotes the identric mean of \(a\) and \(b\).

Mathematics Subject Classification: 26E60, 26D20

Keywords: one-parameter mean, identric mean, power mean

1. **Introduction**

For \(p \in \mathbb{R}\) the \(p\)-th one-parameter mean \(J_p(a, b)\) of two positive numbers \(a\) and \(b\) with \(a \neq b\) is defined by
\[
J_p(a, b) = \begin{cases}
\frac{p(a^{p+1} - b^{p+1})}{(p+1)(a^p - b^p)}, & p \neq 0, -1, \\
\frac{a-b}{a^p - b^p}, & p = 0, \\
\frac{a-b}{a^p - b^p}, & p = -1.
\end{cases}
\]

It is well known that \(J_p(a, b)\) is continuous and strictly increasing with respect to \(p \in \mathbb{R}\) for fixed \(a, b > 0\) with \(a \neq b\).

Let \(A(a, b) = \frac{a+b}{2}\), \(I(a, b) = \frac{1}{e} \left(\frac{a}{b} \right)^{\frac{1}{a-b}}\), \(L(a, b) = \frac{a-b}{\log a - \log b}\), \(G(a, b) = \sqrt{ab}\), and \(H(a, b) = \frac{2ab}{a+b}\) be the arithmetic, identric, logarithmic, geometric, and harmonic means of two positive numbers \(a\) and \(b\) with \(a \neq b\), respectively. Then
\[
\min\{a, b\} < H(a, b) = J_{-2}(a, b) < G(a, b) = J_{-\frac{1}{2}}(a, b)
< L(a, b) = J_0(a, b) < I(a, b) < A(a, b) = J_1(a, b) < \max\{a, b\}.
\]

For \(r \in \mathbb{R}\) the \(r\)-th power mean \(M_r(a, b)\) of two positive numbers \(a\) and \(b\) is defined by
\[
M_r(a, b) = \begin{cases}
\left(\frac{a^r + b^r}{2} \right)^{\frac{1}{r}}, & r \neq 0, \\
\sqrt{ab}, & r = 0.
\end{cases}
\]
Recently, the bivariate means have attracted the attention of many researchers. In particular, many remarkable inequalities can be found in the literature [1-32].

In [33], Lin established the following sharp double inequality

\[M_0(a, b) < L(a, b) < M_{\frac{3}{2}}(a, b) \]

for all \(a, b > 0 \) with \(a \neq b \).

The following best possible inequality between identric and power mean can be found in [34]:

\[M_{\frac{3}{2}}(a, b) < I(a, b) < M_{\log_2}(a, b) \]

for all \(a, b > 0 \) with \(a \neq b \).

The following sharp bounds for \(\sqrt{L(a, b)}I(a, b) \) and \(\frac{1}{2}(L(a, b) + I(a, b)) \) in terms of power mean are proved in [35, 36]:

Theorem A. For all \(a, b > 0 \) with \(a \neq b \), we have

\[M_0(a, b) < \sqrt{L(a, b)}I(a, b) < M_{\frac{3}{2}}(a, b), \]

\[M_{\frac{3}{2}}(a, b) < \frac{1}{2}(L(a, b) + I(a, b)) < M_{\log_2}(a, b), \]

and the given parameters are the best possible.

In [35, 37-39], the authors obtained the bounds of \(L(a, b) \), \(I(a, b) \) and \(\frac{1}{2}(L(a, b) + I(a, b)) \) in terms of \(A(a, b) \) and \(G(a, b) \) as follows:

Theorem B. For all positive real numbers \(a \) and \(b \) with \(a \neq b \), we have

\[L(a, b) < \frac{1}{3}A(a, b) + \frac{2}{3}G(a, b), \]

\[\frac{2}{3}A(a, b) + \frac{1}{3}G(a, b) < I(a, b) \]

and

\[\sqrt{A(a, b)G(a, b)} < \sqrt{L(a, b)}I(a, b) < \frac{1}{2}(L(a, b) + I(a, b)) < \frac{1}{2}(A(a, b) + G(a, b)). \]

The following Theorems C was established by Alzer and Qiu in [36].

Theorem C. The double inequalities

\[\alpha A(a, b) + (1 - \alpha)G(a, b) < I(a, b) < \beta A(a, b) + (1 - \beta)G(a, b) \]
holds for all positive real numbers \(a \) and \(b \) with \(a \neq b \) if and only if \(\alpha \leq \frac{2}{3} \) and \(\beta \geq 2e = 0.73575 \ldots \).

The main purpose of this article is to answer the question: What are the greatest value \(\alpha \) and the least value \(\beta \), such that the double inequality

\[
J_\alpha(a, b) < I(a, b) < J_\beta(a, b)
\]

holds for all \(a, b > 0 \) with \(a \neq b \)?

2. Lemmas

In order to establish our main result we need several lemmas, which we present in this section.

Lemma 2.1. Let \(g(t) = (t^2 - 1)(t^2 + 4t + 1) - 4t(t^2 + t + 1) \log t \), then \(g(t) > 0 \) for \(t > 1 \).

Proof. Simple computations lead to

\[
\begin{align*}
g(1) &= 0, \\
g'(t) &= 4(t^3 + 2t^2 - t - 2) - 4(3t^2 + 2t + 1) \log t, \\
g'(1) &= 0, \\
g''(t) &= 4(3t^2 + t - \frac{1}{t} - 3) - (24t + 8) \log t, \\
g''(1) &= 0, \\
g'''(t) &= 24(t - \log t) - \frac{8}{t} + \frac{4}{t^2} - 20, \\
g'''(1) &= 0, \\
g^{(4)}(t) &= \frac{8}{t^3}(3t^2 + 1)(t - 1) > 0
\end{align*}
\]

for \(t > 1 \).

Therefore, Lemma 2.1 follows from (2.1)-(2.5).

The following Lemma 2.2 can be easily proved via direct computations.

Lemma 2.2. If \(p = \frac{1}{e-1} = 0.581977 \ldots \), then

1. \(2p^3 + 5p^2 + p - 2 > 0 \);
2. \(22p^4 + 45p^3 + 80p^2 + 13p - 44 > 0 \);
3. \(22p^5 + 49p^4 + 30p^3 + 53p^2 + 2p - 48 < 0 \).

Lemma 2.3. Let \(G(t) = (t - 1)[-t^{2p} - pt^{p+1} + 2(p + 1)t^p - pt^{p-1} - 1] + (t^p - 1)(t^{p+1} - 1) \log t \). If \(p = \frac{1}{e-1} = 0.581977 \ldots \), then there exists \(\lambda \in (1, +\infty) \), such that \(G(t) > 0 \) for \(t \in (1, \lambda) \) and \(G(t) < 0 \) for \(t \in (\lambda, +\infty) \).

Proof. Let \(G_1(t) = t^{1-p}G'(t) \), \(G_2(t) = t^{1-p}G''(t) \), \(G_3(t) = t^{3+p}G_2(t) \), \(G_4(t) = t^pG_3(t) \), \(G_5(t) = t^{1-p}G_4(t) \), \(G_6(t) = t^{3-p}G''(t) \). Then simple computations

yield

\[G(1) = 0, \quad \lim_{t \to +\infty} G(t) = -\infty, \quad (2.6) \]

\[G_1(t) = [(2p + 1)t^{p+1} - (p + 1)t - p]\log t - 2pt^{p+1} + 2pt^p - t^{1-p} + t^{-p} \\
- p(p + 2)t^2 + (3p^2 + 5p + 1)t + p(p - 1)t^{-1} - (3p^2 + 2p + 1), \]

\[G_1(1) = 0, \quad \lim_{t \to +\infty} G_1(t) = -\infty, \quad (2.7) \]

\[G'_1(t) = [(2p + 1)(p + 1)t^p - (p + 1)] \log t + (1 - 2p^2)t^p + 2p^2t^{p-1} \\
-(1 - p)t^{-p} - pt^{-1-p} - 2(p + 2)t - p(1 - p)t^{-2p} + (p + 1)t^{-2p} \\
- 2p^3 + 2p^2 + 4p + 1, \]

\[G'_1(1) = 0, \quad \lim_{t \to +\infty} G'_1(t) = -\infty, \quad (2.8) \]

\[G_2(t) = p(p + 1)(1 + 2p) \log t - 2p(p + 1)t^{1-p} - 2p^2(1 - p)t^{-p} - (p + 1)t^{-p} \\
+ pt^{-1-p} - 2p(1 - p) - 2p(1 - p)(2 + p) - p(p + 1) + 2p^2t^{2+p} \\
- 2p(p - 1)(2 + p), \]

\[G_2(1) = 0, \quad \lim_{t \to +\infty} G_2(t) = -\infty, \quad (2.9) \]

\[G_3(t) = 2p^2(1 - p)t^{1+p} + p(p + 1)t^2 - p(p + 1)t - p(p + 1)(1 + 2p)t^{1-p} \\
- 2p^2(1 - p)t^{2-p} - 2p(1 - p)(2 + p)t^3 + p(p + 1)(1 + 2p)t^{2+p} \\
- 2p(p - 1)(2 + p), \]

\[G_3(1) = 0, \quad \lim_{t \to +\infty} G_3(t) = -\infty, \quad (2.10) \]

\[G_4(t) = 2p^2(1 - p^2)t^{2p} + 2p(p + 1)t^{p+1} - p(p + 1)t^p - 6p(1 - p)(p + 2)t^{2+p} \\
+ p(p + 1)(1 + 2p)(2 + p)t^{1+2p} - 2p^2(p - 1)(p - 2)t \\
- p(1 + p)(1 - p)(1 + 2p), \]

\[G_4(1) = 10p(p + 1)(2p - 1) > 0, \quad \lim_{t \to +\infty} G_4(t) = -\infty, \quad (2.11) \]
\[G_5(t) = 4p^3(1 - p^2)t^p + 2p(p + 1)^2 t - p^2(p + 1) - 2p^2(p - 1)(p - 2)t^{1-p} \\
-6p(1 - p)(p + 2)^2 t^2 + p(p + 1)(1 + 2p)^2(2 + p)t^{1+p}, \]
\[G_5(1) = 10p(2p^3 + 5p^2 + p - 2), \quad \lim_{t \to +\infty} G_5(t) = -\infty, \quad (2.12) \]
\[G_5'(t) = 4p^4(1 - p^2)t^{p-1} + 2p(p + 1)^2 + 2p^2(p - 1)^2(p - 2)t^{-p} \\
+12p(p - 1)(p + 2)^2 t + p(p + 1)^2(1 + 2p)^2(2 + p)t^p, \]
\[G_5'(1) = p(22p^4 + 45p^3 + 80p^2 + 13p - 44), \quad \lim_{t \to +\infty} G_5'(t) = -\infty, \quad (2.13) \]
\[G_5''(t) = 4p^4(1 - p^2)(p - 1)t^{p-2} + 2p^3(p - 1)^2(2 - p)t^{-p-1} \\
+12p(p - 1)(p + 2)^2 + p^2(p + 1)^2(1 + 2p)^2(2 + p)t^{-p-1}, \]
\[G_5''(1) = p(22p^5 + 49p^4 + 30p^3 + 53p^2 + 2p - 48), \quad (2.14) \]
\[G_6(t) = 4p^4(1 - p^2)(p - 1)(p - 2) + 2p^3(p - 1)^2(p - 2)(p + 1)t^{1-2p} \\
+ p^2(p + 1)^2(1 + 2p)^2(2 + p)(p - 1)t, \]
\[G_6(1) = p^2(p^2 - 1)(30p^3 + 7p^2 + 15p + 2) < 0, \quad (2.15) \]
\[G_6'(t) = 2p^3(p - 1)^2(2 - p)(p + 1)(2p - 1)t^{-2p} \\
+ p^2(p + 1)^2(1 + 2p)^2(p + 2)(p - 1) \]
\[G_6'(1) = p^2(p^2 - 1)(30p^3 + 7p^2 + 15p + 2) < 0. \quad (2.17) \]

If \(p = \frac{1}{e-1} = 0.581977 \ldots \), then (2.16) leads to that \(G_6'(t) \) is strictly decreasing in \([1, +\infty)\). From (2.17) and the monotonicity of \(G_6'(t) \) we know that \(G_6(t) \) is strictly decreasing in \([1, +\infty)\). Therefore, \(G_6'(t) \) is strictly decreasing in \([1, +\infty)\) follows from (2.15) and the monotonicity of \(G_6(t) \).

From (2.14) and Lemma 2.2(3) together with the monotonicity of \(G_5''(t) \) we clearly see that \(G_5'(t) \) is strictly decreasing in \([1, +\infty)\).

From (2.13) and Lemma 2.2(2) together with the monotonicity of \(G_5'(t) \) we know that there exists \(\lambda_1 \in (1, +\infty) \), such that \(G_5'(t) > 0 \) for \(t \in [1, \lambda_1) \) and \(G_5'(t) < 0 \) for \(t \in (\lambda_1, +\infty) \). Hence, \(G_5(t) \) is strictly increasing in \([1, \lambda_1]\) and strictly decreasing in \([\lambda_1, +\infty)\).
It follows from (2.12) and Lemma 2.2(1) together with the piecewise monotonicity of \(G_5(t) \) that there exists \(\lambda_2 \in (1, +\infty) \), such that \(G_5(t) > 0 \) for \(t \in [1, \lambda_2) \) and \(G_5(t) < 0 \) for \(t \in (\lambda_2, +\infty) \). Hence, \(G_4(t) \) is strictly increasing in \([1, \lambda_2]\) and strictly decreasing in \([\lambda_2, +\infty)\).

From (2.11) and the piecewise monotonicity of \(G_4(t) \) we clearly see that there exists \(\lambda_3 \in (1, +\infty) \), such that \(G_3(t) \) is strictly increasing in \([1, \lambda_3]\) and strictly decreasing in \([\lambda_3, +\infty)\).

It follows from (2.10) and the piecewise monotonicity of \(G_3(t) \) that there exists \(\lambda_4 \in (1, +\infty) \), such that \(G_2(t) \) is strictly increasing in \([1, \lambda_4]\) and strictly decreasing in \([\lambda_4, +\infty)\).

Making use of (2.6)-(2.9) and the similar discussions as above we know that Lemma 2.3 is true.

3. Main Result

Theorem 3.1. Inequality \(J_{\frac{1}{2}}(a, b) < I(a, b) < J_{\frac{1}{2}+\varepsilon}(a, b) \) holds for \(a, b > 0 \) with \(a \neq b \), and the parameters \(\frac{1}{2} \) and \(\frac{1}{2}+\varepsilon \) are the best possible.

Proof. Firstly, we prove that \(I(a, b) > J_{\frac{1}{2}}(a, b) \) and \(\frac{1}{2} \) is the best possible parameter. Without loss of generality, we assume that \(a > b \). Let \(t = \sqrt{\frac{a}{b}} > 1 \), then (1.1) leads to

\[
I(a, b) - J_{\frac{1}{2}}(a, b) = b \left[\frac{1}{e} t^{\frac{2}{2^2-1}} - \frac{t^2 + t + 1}{3} \right].
\]

Let \(f(t) = \log \left(\frac{1}{e} t^{\frac{2}{2^2-1}} \right) - \log \left(\frac{t^2 + t + 1}{3} \right) \), then simple computations yield

\[
\lim_{t \to 1^+} f(t) = 0,
\]

and

\[
f'(t) = \frac{g(t)}{(t^2 - 1)^2(t^2 + t + 1)},
\]

where \(g(t) = (t^2 - 1)(t^2 + 4t + 1) - 4t(t^2 + t + 1) \log t \).

Therefore, \(I(a, b) > J_{\frac{1}{2}}(a, b) \) follows from Lemma 2.1 and (3.1)-(3.3).

For any \(\varepsilon > 0 \) and \(x > 0 \), from (1.1) one has

\[
J_{\frac{1}{2}+\varepsilon}(1+x, 1) - I(1+x, 1) = \frac{1}{2} + \varepsilon \left(\frac{1}{(1+x)^{\frac{1}{2}+\varepsilon}} - 1 \right) - \frac{1}{e} (1+x)^{\frac{1}{2}+\varepsilon} \cdot h(x),
\]

where \(h(x) \) is the best possible.

From (3.4) one has

\[
J_{\frac{1}{2}+\varepsilon}(1+x, 1) - I(1+x, 1) = \frac{1}{2} + \varepsilon \left(\frac{1}{(1+x)^{\frac{1}{2}+\varepsilon}} - 1 \right) - \frac{1}{e} (1+x)^{\frac{1}{2}+\varepsilon} \cdot h(x),
\]
where \(h(x) = \frac{1}{\varepsilon + x}[(1 + x)^{\frac{2}{3}} + \varepsilon - 1] - \frac{1}{(\varepsilon + x)^2}[(1 + x)^{\frac{1}{2}} + \varepsilon - 1] \cdot \frac{1}{\varepsilon}(1 + x)^{\frac{1}{2} + \varepsilon} \).

Letting \(x \to 0 \) and making use of Taylor expansion we get

\[
h(x) = \left[x + \frac{\varepsilon + \varepsilon}{2} x^2 + \frac{(\frac{\varepsilon}{2} + \varepsilon)(\frac{\varepsilon}{2} + \varepsilon)}{6} x^3 + o(x^3) \right] - \left[x + \frac{-\varepsilon + \varepsilon}{2} x^2 + \frac{(-\frac{\varepsilon}{2} + \varepsilon)(-\frac{\varepsilon}{2} + \varepsilon)}{6} x^3 + o(x^3) \right] \\
\times \left[1 + \frac{1}{2} x - \frac{1}{24} x^2 + o(x^2) \right] \\
= \frac{\varepsilon}{12} x^3 + o(x^3).
\]

Equations (3.4) and (3.5) imply that for any \(\varepsilon > 0 \) there exists \(\delta = \delta(\varepsilon) > 0 \), such that \(J_{\frac{1}{\varepsilon} + \varepsilon}(1 + x, 1) > I(1 + x, 1) \) for \(x \in (0, \delta) \).

Secondly, we prove that \(J_{\frac{1}{\varepsilon}}(a, b) > I(a, b) \) and \(\frac{1}{\varepsilon - 1} \) is the best possible parameter. Without loss of generality, we assume that \(a > b \). Let \(t = \frac{a}{b} > 1 \) and \(p = \frac{1}{\varepsilon - 1} \), then (1.1) leads to

\[
J_p(a, b) - I(a, b) = b \left[\frac{p(t^{p+1} - 1)}{(p+1)(tp - 1)} - \frac{1}{e^{t^{\frac{1}{p}}}} \right].
\]

Let \(f(t) = \log \left[\frac{p(t^{p+1} - 1)}{(p+1)(tp - 1)} \right] - \log \left(\frac{1}{e^{t^{\frac{1}{p}}}} \right) \), then simple computations yield

\[
\lim_{t \to 1^+} f(t) = 0, \quad \lim_{t \to +\infty} f(t) = 0,
\]

\[
f'(t) = \frac{G(t)}{(tp+1 - 1)(tp - 1)(t - 1)^2},
\]

where \(G(t) \) is defined as in Lemma 2.3.

Equation (3.8) and Lemma 2.3 imply that there exists \(\lambda \in (1, +\infty) \), such that \(f(t) \) is strictly increasing in \((1, \lambda)\) and strictly decreasing in \((\lambda, +\infty)\).

From (3.7) and the piecewise monotonicity of \(f(t) \) we clearly see that \(f(t) > 0 \) for \(t > 1 \). Then (3.6) leads to \(J_{\frac{1}{\varepsilon}}(a, b) > I(a, b) \).

For any \(0 < \varepsilon < \frac{1}{\varepsilon - 1} \) and \(x > 1 \), from (1.1) one has

\[
\lim_{x \to +\infty} \frac{I(x, 1)}{J_{\frac{1}{\varepsilon - 1} - \varepsilon}(x, 1)} = \lim_{x \to +\infty} \frac{\frac{1}{\varepsilon - 1} - \frac{1}{\varepsilon} \cdot (x^{\frac{1}{\varepsilon - 1} - \varepsilon} - 1) x^{\varepsilon} - 1}{\frac{1}{\varepsilon - 1} - \varepsilon} \\
= \frac{\frac{1}{\varepsilon - 1} - \frac{1}{\varepsilon}}{\frac{1}{\varepsilon - 1} - \varepsilon} > 1.
\]

Inequality (3.9) implies that for any \(0 < \varepsilon < \frac{1}{\varepsilon - 1} \) there exists \(X = X(\varepsilon) > 1 \), such that \(I(x, 1) > J_{\frac{1}{\varepsilon - 1} - \varepsilon}(x, 1) \) for \(x \in (X, +\infty) \).
References

Received: May 5, 2013