The Difference of χ^2 over p–Metric Spaces Defined by Musielak

N. Kavitha
Department of Mathematics
University College of Engineering (constitutnet College of Anna University)
Pattukkottai, India
kavitha977@yahoo.com.sg

N. Saivaraju
Department of Mathematics
Sri Angalamman College of Engineering and Technology
Trichirappalli-621 105, India
saivaraju@yahoo.com

N. Subramanian
Department of Mathematics
SASTRA University, Thanjavur-613 401, India
nsmaths@yahoo.com

Copyright © 2013 N. Kavitha et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
Abstract. In this paper, we introduce the sequence spaces $\chi_{fp}^{2\alpha} (\Delta_n^m)$ and $\Lambda_{fp}^{2\alpha} (\Delta_n^m)$ defined by Musielak. We study some topological properties and prove some inclusion relations between these spaces.

Mathematics Subject Classification: 40A05, 40C05, 40D05

Keywords: analytic sequence, double sequences, χ^2 space, difference sequence space, Musielak - modulus function, p- metric space

1. Introduction

Throughout w, χ and Λ denote the classes of all, gai and analytic scalar valued single sequences, respectively.

We write w^2 for the set of all complex sequences (x_{mn}), where $m, n \in \mathbb{N}$, the set of positive integers. Then, w^2 is a linear space under the coordinate wise addition and scalar multiplication.

Some initial works on double sequence spaces is found in Bromwich [2]. Later on, they were investigated by Hardy [3], Moricz [7], Moricz and Rhoades [8], Basarir and Solankan [1], Tripathy [11], Turkmenoglu [12], and many others.

We procure the following sets of double sequences:

$$
\mathbb{M}_u(t) := \{(x_{mn}) \in w^2 : \sup_{m,n \in \mathbb{N}} |x_{mn}|^{t_{mn}} < \infty \},
$$

$$
\mathcal{C}_p(t) := \{(x_{mn}) \in w^2 : \lim_{m,n \to \infty} |x_{mn} - l|^{t_{mn}} = 1 \text{ for some } l \in \mathbb{C} \},
$$

$$
\mathcal{C}_{0p}(t) := \{(x_{mn}) \in w^2 : p - \lim_{m,n \to \infty} |x_{mn}|^{t_{mn}} = 1 \},
$$

$$
\mathcal{L}_u(t) := \{(x_{mn}) \in w^2 : \sum_{m=1}^{\infty} \sum_{n=1}^{\infty} |x_{mn}|^{t_{mn}} < \infty \},
$$

$$
\mathcal{C}_{bp}(t) := \mathcal{C}_p(t) \cap \mathbb{M}_u(t) \text{ and } \mathcal{C}_{0bp}(t) = \mathcal{C}_{0p}(t) \cap \mathbb{M}_u(t);
$$

where $t = (t_{mn})$ is the sequence of strictly positive reals t_{mn} for all $m, n \in \mathbb{N}$ and $p - \lim_{m,n \to \infty}$ denotes the limit in the Pringsheim’s sense. In the case $t_{mn} = 1$ for all $m, n \in \mathbb{N}$; $\mathbb{M}_u(t), \mathcal{C}_p(t), \mathcal{C}_{0p}(t), \mathcal{L}_u(t), \mathcal{C}_{bp}(t)$ and $\mathcal{C}_{0bp}(t)$ reduce to the sets $\mathbb{M}_u, \mathcal{C}_p, \mathcal{C}_{0p}, \mathcal{L}_u, \mathcal{C}_{bp}$ and \mathcal{C}_{0bp}, respectively. Now, we may summarize the knowledge given in some document related to the double sequence spaces. Gökhan and Colak [14,15] have proved that $\mathbb{M}_u(t)$ and $\mathcal{C}_p(t), \mathcal{C}_{bp}(t)$ are complete paranormed spaces of double sequences and gave the $\alpha-, \beta-, \gamma-$ duals of the spaces $\mathbb{M}_u(t)$ and $\mathcal{C}_{bp}(t)$. Quite recently, in her PhD thesis, Zelter [16] has essentially studied both the theory of topological double sequence spaces and the theory of summability of double sequences. Mursaleen and Edely [17] and Tripathy [11] have independently introduced the statistical convergence and Cauchy for double sequences and given the relation between statistical convergent and strongly Cesàro summable double sequences. Altay and Basar [20] have defined the spaces $BS, BS(t), CS_p, CS_{bp}, CS_r$ and BV of double sequences consisting of all double series whose sequence of partial sums are in the spaces $\mathbb{M}_u, \mathbb{M}_u(t), \mathcal{C}_p, \mathcal{C}_{bp}, \mathcal{C}_r$ and \mathcal{L}_u, respectively, and also examined some properties of those sequence spaces and determined the $\alpha-$ duals of the spaces.
The difference of χ^2 over $p-$ metric spaces defined by Musielak

bas, BV, CSbp and the $\beta (\vartheta) -$ duals of the spaces $CSbp$ and CS_r of double series. Basar and Sever [21] have introduced the Banach space L_q of double sequences corresponding to the well-known space ℓ_q of single sequences and examined some properties of the space L_q. Quite recently Subramanian and Misra [22] have studied the space $\chi^2_M (p, q, u)$ of double sequences and gave some inclusion relations.

The class of sequences which are strongly Cesàro summable with respect to a modulus was introduced by Maddox [6] as an extension of the definition of strongly Cesàro summable sequences. Connor [23] further extended this definition to a definition of strong $A-$ summability where $A = (a_{n,k})$ is a nonnegative regular matrix and established some connections between strong $A-$ summability, strong $A-$ statistical convergence. In [24] the notion of convergence of double sequences was presented by A. Pringsheim. Also, in [25]-[26], and [27] the four dimensional matrix transformation $(Ax)_{k,\ell} = \sum_{m=1}^{\infty} \sum_{n=1}^{\infty} a_{mn} x_{k,\ell}$ was studied extensively by Robison and Hamilton.

We need the following inequality in the sequel of the paper. For $a, b, \geq 0$ and $0 < p < 1$, we have

\[(a + b)^p \leq a^p + b^p\] (1.1)

The double series $\sum_{m,n=1}^{\infty} x_{mn}$ is called convergent if and only if the double sequence (s_{mn}) is convergent, where $s_{mn} = \sum_{i,j=1}^{m,n} x_{ij} (m, n \in \mathbb{N})$.

A sequence $x = (x_{mn})$ is said to be double analytic if $\sup_{m,n} |x_{mn}|^{1/m+n} < \infty$. The vector space of all double analytic sequences will be denoted by Λ^2. A sequence $x = (x_{mn})$ is called double gai sequence if \((m+n)! |x_{mn}|^{1/m+n} \to 0\) as $m, n \to \infty$. The double gai sequences will be denoted by χ^2. Let $\phi = \{all \; finite \; sequences\}$.

Consider a double sequence $x = (x_{ij})$. The $(m,n)^{th}$ section $x^{[m,n]}$ of the sequence is defined by $x^{[m,n]} = \sum_{i,j=0}^{m,n} x_{i,j} \Xi_{ij}$ for all $m, n \in \mathbb{N}$; where Ξ_{ij} denotes the double sequence whose only non zero term is $\frac{1}{(i+j)!}$ in the $(i,j)^{th}$ place for each $i, j \in \mathbb{N}$.

An FK-space(or a metric space) X is said to have AK property if (Ξ_{mn}) is a Schauder basis for X. Or equivalently $x^{[m,n]} \to x$.

An FDK-space is a double sequence space endowed with a complete metrizable; locally convex topology under which the coordinate mappings $x = (x_k) \to (x_{mn})(m, n \in \mathbb{N})$ are also continuous.

Let M and Φ are mutually complementary modulus functions. Then, we have:

(i) For all $u, y \geq 0$,

\[uy \leq M (u) + \Phi (y) , (Young's \; inequality) [See \; [13]]\] (1.2)
(ii) For all \(u \geq 0 \),
\[
(1.3) \quad u \eta (u) = M(u) + \Phi(\eta(u)).
\]

(iii) For all \(u \geq 0 \), and \(0 < \lambda < 1 \),
\[
(1.4) \quad M(\lambda u) \leq \lambda M(u).
\]

Lindenstrauss and Tzafriri [5] used the idea of Orlicz function to construct Orlicz sequence space
\[
\ell_M = \left\{ x \in w : \sum_{k=1}^{\infty} M\left(\frac{|x_k|}{\rho}\right) < \infty, \text{ for some } \rho > 0 \right\},
\]

The space \(\ell_M \) with the norm
\[
\|x\| = \inf \left\{ \rho > 0 : \sum_{k=1}^{\infty} M\left(\frac{|x_k|}{\rho}\right) \leq 1 \right\},
\]
becomes a Banach space which is called an Orlicz sequence space. For \(M(t) = t^p \) \((1 \leq p < \infty)\), the spaces \(\ell_M \) coincide with the classical sequence space \(\ell_p \).

A sequence \(f = (f_{mn}) \) of modulus function is called a Musielak-modulus function. A sequence \(g = (g_{mn}) \) defined by
\[
g_{mn}(v) = \sup \{ |v| u - (f_{mn})(u) : u \geq 0 \}, m, n = 1, 2, \cdots
\]
is called the complementary function of a Musielak-modulus function \(f \). For a given Musielak modulus function \(f \), the Musielak-modulus sequence space \(t_f \) and its subspace \(h_f \) are defined as follows
\[
t_f = \left\{ x \in w^2 : I_f(\|x_{mn}\|)^{1/m+n} \to 0 as m, n \to \infty \right\},
\]
\[
h_f = \left\{ x \in w^2 : I_f(\|x_{mn}\|)^{1/m+n} \to 0 as m, n \to \infty \right\},
\]

where \(I_f \) is a convex modular defined by
\[
I_f(x) = \sum_{m=1}^{\infty} \sum_{n=1}^{\infty} f_{mn}(\|x_{mn}\|)^{1/m+n}, x = (x_{mn}) \in t_f.
\]

We consider \(t_f \) equipped with the Luxemburg metric
\[
d(x, y) = \sup_{mn} \left\{ \inf \left(\sum_{m=1}^{\infty} \sum_{n=1}^{\infty} f_{mn}\left(\frac{|x_{mn}|^{1/m+n}}{mn}\right) \right) \leq 1 \right\}
\]

If \(X \) is a sequence space, we give the following definitions:

(i) \(X' = \) the continuous dual of \(X \);

(ii) \(X^\alpha = \{ a = (a_{mn}) : \sum_{m,n=1}^{\infty} |a_{mn}x_{mn}| < \infty, \text{ for each } x \in X \} \);

(iii) \(X^\beta = \{ a = (a_{mn}) : \sum_{m,n=1}^{\infty} a_{mn}x_{mn} \text{ is convergent, for each } x \in X \} \);

(iv) \(X^\gamma = \{ a = (a_{mn}) : \sup_{mn} \geq 1 \sum_{m,n=1}^{M,N} |a_{mn}x_{mn}| < \infty, \text{ for each } x \in X \} \);

(v) let \(X \) be an FK - space \(\supset \phi; \) then \(X^f = \{ f(\Phi_{mn}) : f \in X' \} \);
The difference of χ^2 over p-metric spaces defined by Musielak

\[(vi) X^\delta = \left\{ a = (a_{mn}) : \sup_{mn} |a_{mn}x_{mn}|^{1/m+n} < \infty, \text{forall } x \in X \right\};\]

$X^\alpha, X^\beta, X^\gamma$ are called $\alpha - \text{(or Kôthe - Toeplitz)}$ dual of $X, \beta - \text{(or generalized - Kôthe - Toeplitz)}$ dual of $X, \gamma - \text{dual of X}$ respectively. X^α is defined by Gupta and Kampion [13]. It is clear that $X^\alpha \subset X^\beta$ and $X^\alpha \subset X^\gamma$, but $X^\beta \subset X^\gamma$ does not hold, since the sequence of partial sums of a double convergent series need not to be bounded.

The notion of difference sequence spaces (for single sequences) was introduced by Kizmaz as follows

\[Z(\Delta) = \{ x = (x_k) \in w : (\Delta x_k) \in Z \}\]

for $Z = c, c_0 \text{ and } \ell_\infty$, where $\Delta x_k = x_k - x_{k+1}$ for all $k \in \mathbb{N}$.

Here $c, c_0 \text{ and } \ell_\infty$ denote the classes of convergent, null and bounded scalar valued sequences respectively. The difference sequence space bv_p of the classical space ℓ_p is introduced and studied in the case $1 \leq p \leq \infty$ by Başar and Altay and in the case $0 < p < 1$ by Altay and Başar in [20]. The spaces $c(\Delta), c_0(\Delta), \ell_\infty(\Delta)$ and bv_p are Banach spaces normed by

\[\|x\| = |x_1| + \sup_{k \geq 1} |\Delta x_k| \text{ and } \|x\|_{bv_p} = (\sum_{k=1}^\infty |x_k|^p)^{1/p}, (1 \leq p < \infty).\]

Later on the notion was further investigated by many others. We now introduce the following difference double sequence spaces defined by

\[Z(\Delta) = \{ x = (x_{mn}) \in w^2 : (\Delta x_{mn}) \in Z \}\]

where $Z = \Lambda^2, \chi^2$ and $\Delta x_{mn} = (x_{mn} - x_{mn+1}) - (x_{m+1n} - x_{m+1n+1}) = x_{mn} - x_{mn+1} - x_m + x_n = (x_{mn} - x_{mn+1} - x_{m+1n} + x_{m+1n+1})$ for all $m, n \in \mathbb{N}$. The generalized difference double notation has the following representation: $\Delta^m x_{mn} = \Delta^{m-1} x_{mn} - \Delta^{m-1} x_{mn+1} - \Delta^{m-1} x_{m+1n} + \Delta^{m-1} x_{m+1n+1},$ and also this generalized difference double notation has the following binomial representation:

\[\Delta^m x_{mn} = \sum_{i=0}^m \sum_{j=0}^m (-1)^{i+j} \binom{m}{i} \binom{m}{j} x_{m+i,n+j}.\]

2. Definition and Preliminaries

Let $n \in \mathbb{N}$ and X be a real vector space of dimension w, where $n \leq w$. A real valued function $d_p(x_1, \ldots, x_n) = \|(d_1(x_1), \ldots, d_n(x_n))\|_p$ on X satisfying the following four conditions:

(i) $\|(d_1(x_1), \ldots, d_n(x_n))\|_p = 0$ if and only if $d_1(x_1), \ldots, d_n(x_n)$ are linearly dependent,

(ii) $\|(d_1(x_1), \ldots, d_n(x_n))\|_p$ is invariant under permutation,

(iii) $\|(\alpha d_1(x_1), \ldots, d_n(x_n))\|_p = |\alpha| \|(d_1(x_1), \ldots, d_n(x_n))\|_p, \alpha \in \mathbb{R}$

(iv) $d_p ((x_1, y_1), (x_2, y_2), \ldots, (x_n, y_n)) = (d_X(x_1, x_2, \ldots, x_n)^p + d_Y(y_1, y_2, \ldots, y_n)^p)^{1/p}$ for $1 \leq p < \infty$; (or)

(v) $d ((x_1, y_1), (x_2, y_2), \ldots, (x_n, y_n)) := \sup \{ d_X(x_1, x_2, \ldots, x_n), d_Y(y_1, y_2, \ldots, y_n) \},$

for $x_1, x_2, \ldots, x_n \in X, y_1, y_2, \ldots, y_n \in Y$ is called the p product metric of the Cartesian product of n metric spaces is the p norm of the n-vector of the norms of the n subspaces.

A trivial example of p product metric of n metric space is the p norm space is $X = \mathbb{R}$ equipped with the following Euclidean metric in the product space is the p norm:
∥(d_1(x_1),\ldots,d_n(x_n))\|_E = \sup \left| \det\left(\begin{array}{cccc} d_{11}(x_{11}) & d_{12}(x_{12}) & \cdots & d_{1n}(x_{1n}) \\ d_{21}(x_{21}) & d_{22}(x_{22}) & \cdots & d_{2n}(x_{1n}) \\ \vdots & \vdots & & \vdots \\ d_{n1}(x_{n1}) & d_{n2}(x_{n2}) & \cdots & d_{nn}(x_{nn}) \end{array} \right) \right|

where x_i = (x_{i1},\ldots,x_{in}) \in \mathbb{R}^n for each i = 1,2,\ldots,n.

If every Cauchy sequence in X converges to some L ∈ X, then X is said to be complete with respect to the p- metric. Any complete p- metric space is said to be p- Banach metric space.

Let X be a linear metric space. A function w : X → \mathbb{R} is called paranorm, if
(1) w(x) ≥ 0, for all x ∈ X;
(2) w(-x) = w(x), for all x ∈ X;
(3) w(x + y) ≤ w(x) + w(y), for all x, y ∈ X;
(4) If (σ_{mn}) is a sequence of scalars with σ_{mn} → σ as m, n → ∞ and (x_{mn}) is a sequence of vectors with w(x_{mn} - x) → 0 as m, n → ∞, then w(σ_{mn}x_{mn} - σx) → 0 as m, n → ∞.

A paranorm w for which w(x) = 0 implies x = 0 is called total paranorm and the pair (X, w) is called a total paranormed space. It is well known that the metric of any linear metric space is given by some total paranorm (see [32], Theorem 10.4.2, p.183). The zero sequence
\begin{pmatrix} 0 & 0 & \cdots & 0 \\ 0 & 0 & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & 0 \\ 0 & 0 & \cdots & 0 \end{pmatrix}

is denoted by θ and p = (p_{mn}) is a sequence of strictly positive real numbers. Further the sequence (p_{mn}^{-1}) will be represented by (t_{mn}).

Let f = (f_{mn}) be a Musielak-modulus function and p = (p_{mn}) be any bounded sequence of positive real numbers and let (X, q) be a seminormed space seminormed by q. In the present paper, we define the following sequence spaces:

Let us consider μ_{mn}(x) = \left[q((m+n)!\Delta_m^n)^{1/m+n} \right]^{p_{mn}} t_{mn}

χ_{fp}^q(Δ_m^n) = \{ x = (x_{mn}) ∈ X : [f(μ_{mn}(x))] → 0, as m, n → ∞ \},

Λ_{fp}^q(Δ_m^n) = \{ x = (x_{mn}) ∈ X : sup_{mn} [f(μ_{mn}(x))] < ∞ \}.

If we take p = (p_{mn}) = 1, we have
\(\chi_{f^{p}}^{2q} (\Delta_{n}^{m}) = \{ x = (x_{mn}) \in X : [f(\mu_{mn}(x))] \to 0, \text{as} \, m, n \to \infty \} \),

\(\Lambda_{f^{p}}^{2q} (\Delta_{n}^{m}) = \{ x = (x_{mn}) \in X : sup_{mn} [f(\mu_{mn}(x))] < \infty \} \).

The following inequality will be used throughout the paper. If \(0 \leq p_{mn} \leq sup_{mn} = K, D = max \{ 1, 2^{K-1} \} \) then

\[|a_{mn} + b_{mn}|^{p_{mn}} \leq D \{ |a_{mn}|^{p_{mn}} + |b_{mn}|^{p_{mn}} \} \]

for all \(m, n \) and \(a_{mn}, b_{mn} \in \mathbb{C} \). Also \(|a|^{p_{mn}} \leq max \{ 1, |a|^{K} \} \) for all \(a \in \mathbb{C} \).

In this paper we study some topological properties of the above sequence spaces.

3. Main Results

3.1. Theorem. Let \(f = (f_{mn}) \) be a Musielak-modulus function, \(p = (p_{mn}) \) be a double analytic sequence of strictly positive real numbers, the sequence spaces \(\left[\chi_{f^{p}}^{2q}, \|(d(x_{1}), d(x_{2}), \cdots, d(x_{n-1}))\|_{p} \right] \) and \(\left[\Lambda_{f^{p}}^{2q}, \|(d(x_{1}), d(x_{2}), \cdots, d(x_{n-1}))\|_{p} \right] \) are linear spaces.

Proof: It is routine verification. Therefore the proof is omitted.

3.2. Theorem. Let \(f = (f_{mn}) \) be a Musielak-modulus function, \(p = (p_{mn}) \) be a double analytic sequence of strictly positive real numbers, the sequence space \(\left[\chi_{f^{p}}^{2q}, \|(d(x_{1}), d(x_{2}), \cdots, d(x_{n-1}))\|_{p} \right] \) is a paranormed space with respect to the paranorm defined by

\(g(x) = \inf \left\{ \left[f_{mn} \left(\|(\mu_{mn}(x), d(x_{1}), d(x_{2}), \cdots, d(x_{n-1}))\|_{p} \right) \right] \leq 1 \right\} = 0. \)

Proof: Clearly \(g(x) \geq 0 \) for \(x = (x_{mn}) \in \left[\chi_{f^{p}}^{2q}, \|(d(x_{1}), d(x_{2}), \cdots, d(x_{n-1}))\| \right] \). Since \(f_{mn}(0) = 0 \), we get \(g(0) = 0 \).

Conversely, suppose that \(g(x) = 0 \), then

\(\inf \left\{ \left[f_{mn} \left(\|(\mu_{mn}(x), d(x_{1}), d(x_{2}), \cdots, d(x_{n-1}))\|_{p} \right) \right] \leq 1 \right\} = 0 \)

Suppose that \(\mu_{mn}(x) \neq 0 \) for each \(m, n \in \mathbb{N} \). Then \(\|(\mu_{mn}(x), d(x_{1}), d(x_{2}), \cdots, d(x_{n-1}))\|_{p} \to \infty \). It follows that \(\left[f_{mn} \left(\|(\mu_{mn}(x), d(x_{1}), d(x_{2}), \cdots, d(x_{n-1}))\|_{p} \right) \right]^{1/H} \to \infty \) which is a contradiction. Therefore \(\mu_{mn}(x) = 0 \). Let

\(\left[f_{mn} \left(\|(\mu_{mn}(x), d(x_{1}), d(x_{2}), \cdots, d(x_{n-1}))\|_{p} \right) \right]^{1/H} \leq 1 \)

and

\(\left[f_{mn} \left(\|(\mu_{mn}(y), d(x_{1}), d(x_{2}), \cdots, d(x_{n-1}))\|_{p} \right) \right]^{1/H} \leq 1 \)

Then by using Minkowski’s inequality, we have

\(\left[f_{mn} \left(\|(\mu_{mn}(x+y), d(x_{1}), d(x_{2}), \cdots, d(x_{n-1}))\|_{p} \right) \right]^{1/H} \leq \).
N. Kavitha, N. Saivaraju and N. Subramanian

\[
\left[f_{mn} \left(\|\mu_{mn} (x), (d(x_1), d(x_2), \ldots, d(x_{n-1})\|_p \right) \right]^{1/H} + \\
\left[f_{mn} \left(\|\mu_{mn} (y), (d(x_1), d(x_2), \ldots, d(x_{n-1})\|_p \right) \right]^{1/H}.
\]

So we have
\[
g(x + y) = \inf \left\{ f_{mn} \left(\|\mu_{mn} (x + y), (d(x_1), d(x_2), \ldots, d(x_{n-1})\|_p \right) \leq 1 \right\} \leq \\
\inf \left\{ f_{mn} \left(\|\mu_{mn} (x), (d(x_1), d(x_2), \ldots, d(x_{n-1})\|_p \right) \leq 1 \right\} + \\
\inf \left\{ f_{mn} \left(\|\mu_{mn} (y), (d(x_1), d(x_2), \ldots, d(x_{n-1})\|_p \right) \leq 1 \right\}
\]

Therefore,
\[
g(x + y) \leq g(x) + g(y).
\]

Finally, to prove that the scalar multiplication is continuous. Let \(\lambda \) be any complex number. By definition,
\[
g(\lambda x) = \inf \left\{ f_{mn} \left(\|\mu_{mn} (\lambda x), (d(x_1), d(x_2), \ldots, d(x_{n-1})\|_p \right) \leq 1 \right\}.
\]

Then
\[
g(\lambda x) = \inf \left\{ (|\lambda| t)^{q_{mn}/H} : u_{mn} \left[f_{mn} \left(\|\mu_{mn} (\lambda x), (d(x_1), d(x_2), \ldots, d(x_{n-1})\|_p \right) \right]^{q_{mn}} \leq 1 \right\}
\]

where \(\lambda = \frac{1}{|\lambda|} \). Since \(|\lambda|^{q_{mn}} \leq \max (1, |\lambda|^{\supp_{mn}}) \), we have
\[
g(\lambda x) \leq \max (1, |\lambda|^{\supp_{mn}}) \inf \left\{ t^{q_{mn}/H} : u_{mn} \left[f_{mn} \left(\|\mu_{mn} (\lambda x), (d(x_1), d(x_2), \ldots, d(x_{n-1})\|_p \right) \right] \leq 1 \right\}
\]

This completes the proof.

3.3. **Theorem.** (i) If the sequence \((f_{mn})\) satisfies uniform \(\Delta_2\)-condition, then
\[
\left[\chi_{fp}^{2q}, \|\mu_{mn} (x), (d(x_1), d(x_2), \ldots, d(x_{n-1})\|_p \right) \right]^{\alpha} = \\
\left[\chi_{g}^{2q}, \|\mu_{mn} (x), (d(x_1), d(x_2), \ldots, d(x_{n-1})\|_p \right).
\]

(ii) If the sequence \((g_{mn})\) satisfies uniform \(\Delta_2\)-condition, then
\[
\left[\chi_{fp}^{2q}, \|\mu_{mn} (x), (d(x_1), d(x_2), \ldots, d(x_{n-1})\|_p \right) \right]^{\alpha} = \\
\left[\chi_{fp}^{2q}, \|\mu_{mn} (x), (d(x_1), d(x_2), \ldots, d(x_{n-1})\|_p \right]
\]

Proof: Let the sequence \((f_{mn})\) satisfies uniform \(\Delta_2\)-condition, we get

\[
(3.1) \\
\left[\chi_{fp}^{2q}, \|\mu_{mn} (x), (d(x_1), d(x_2), \ldots, d(x_{n-1})\|_p \right] \subset \left[\chi_{fp}^{2q}, \|\mu_{mn} (x), (d(x_1), d(x_2), \ldots, d(x_{n-1})\|_p \right]^{\alpha}
\]

To prove the inclusion
\[
\left[\chi_{fp}^{2q}, \|\mu_{mn} (x), (d(x_1), d(x_2), \ldots, d(x_{n-1})\|_p \right]^{\alpha} \subset \\
\left[\chi_{fp}^{2q}, \|\mu_{mn} (x), (d(x_1), d(x_2), \ldots, d(x_{n-1})\|_p \right],
\]

let \(a \in \left[\chi_{fp}^{2q}, \|\mu_{mn} (x), (d(x_1), d(x_2), \ldots, d(x_{n-1})\|_p \right] \). Then for all \(\{x_{mn}\} \) with \((x_{mn}) \in \)
The difference of χ^2 over p-metric spaces defined by Musielak

\[\sum_{m=1}^{\infty} \sum_{n=1}^{\infty} |x_{mn}a_{mn}| < \infty. \]

Since the sequence (f_{mn}) satisfies uniform Δ_2-condition, then

\[(y_{mn}) \in \left[\chi_{f_{np}}^{2q}, \|\mu_{mn}(x), (d(x_1), d(x_2), \cdots, d(x_{n-1}))\|_p \right], \]

we get

\[\sum_{m=1}^{\infty} \sum_{n=1}^{\infty} |\varphi_{rn}y_{mn}a_{mn}| < \infty. \]

by (3.2). Thus $(\varphi_{rn}a_{mn}) \in \left[\chi_{f_{np}}^{2q}, \|\mu_{mn}(x), (d(x_1), d(x_2), \cdots, d(x_{n-1}))\|_p \right]

and hence

\[(a_{mn}) \in \left[\chi_{f_{np}}^{2q}, \|\mu_{mn}(x), (d(x_1), d(x_2), \cdots, d(x_{n-1}))\|_p \right]. \]

This gives that

\[\left[\chi_{f_{np}}^{2q}, \|\mu_{mn}(x), (d(x_1), d(x_2), \cdots, d(x_{n-1}))\|_p \right]^\alpha \subset \left[\chi_{f_{np}}^{2q}, \|\mu_{mn}(x), (d(x_1), d(x_2), \cdots, d(x_{n-1}))\|_p \right] \]

we are granted with (3.1) and (3.3)

\[\left[\chi_{f_{np}}^{2q}, \|\mu_{mn}(x), (d(x_1), d(x_2), \cdots, d(x_{n-1}))\|_p \right]^\alpha = \left[\chi_{f_{np}}^{2q}, \|\mu_{mn}(x), (d(x_1), d(x_2), \cdots, d(x_{n-1}))\|_p \right] \]

(ii) Similarly, one can prove that

\[\left[\chi_{f_{np}}^{2q}, \|\mu_{mn}(x), (d(x_1), d(x_2), \cdots, d(x_{n-1}))\|_p \right]^\alpha \subset \left[\chi_{f_{np}}^{2q}, \|\mu_{mn}(x), (d(x_1), d(x_2), \cdots, d(x_{n-1}))\|_p \right] \]

if the sequence (g_{mn}) satisfies uniform Δ_2-condition.

3.4. Proposition. If $0 < p_{mn} < r_{mn} < \infty$ for each m and n, then

\[\left[\chi_{f_{np}}^{2q}, \|\mu_{mn}(x), (d(x_1), d(x_2), \cdots, d(x_{n-1}))\|_p \right] \subset \left[\chi_{f_{np}}^{2q}, \|\mu_{mn}(x), (d(x_1), d(x_2), \cdots, d(x_{n-1}))\|_p \right] \]

Proof: The proof is standard, so we omit it.

3.5. Proposition. (i) If $0 < \inf p_{mn} \leq p_{mn} < 1$ then

\[\left[\chi_{f_{np}}^{2q}, \|\mu_{mn}(x), (d(x_1), d(x_2), \cdots, d(x_{n-1}))\|_p \right] \subset \left[\chi_{f_{np}}^{2q}, \|\mu_{mn}(x), (d(x_1), d(x_2), \cdots, d(x_{n-1}))\|_p \right]. \]

(ii) If $1 \leq p_{mn} \leq \sup p_{mn} < \infty$, then

\[\left[\chi_{f_{np}}^{2q}, \|\mu_{mn}(x), (d(x_1), d(x_2), \cdots, d(x_{n-1}))\|_p \right] \subset \left[\chi_{f_{np}}^{2q}, \|\mu_{mn}(x), (d(x_1), d(x_2), \cdots, d(x_{n-1}))\|_p \right]. \]

Proof: The proof is standard, so we omit it.

3.6. Proposition. Let $f' = (f'_{mn})$ and $f'' = (f''_{mn})$ are sequences of Musielak functions, we have

\[\left[\chi_{f'_{np}}^{2q}, \|\mu_{mn}(x), (d(x_1), d(x_2), \cdots, d(x_{n-1}))\|_p \right] \cap \left[\chi_{f''_{np}}^{2q}, \|\mu_{mn}(x), (d(x_1), d(x_2), \cdots, d(x_{n-1}))\|_p \right] \]

\[\left[\chi_{f'_{np}}^{2q}, \|\mu_{mn}(x), (d(x_1), d(x_2), \cdots, d(x_{n-1}))\|_p \right] \subset \left[\chi_{f''_{np}}^{2q}, \|\mu_{mn}(x), (d(x_1), d(x_2), \cdots, d(x_{n-1}))\|_p \right] \]

Proof: The proof is easy so we omit it.
3.7. **Proposition.** For any sequence of Musielak functions \(f = (f_{mn}) \) and \(q = (q_{mn}) \) be double analytic sequence of strictly positive real numbers. Then
\[
\left[\Lambda_{fp}^{q}, \|\mu_{mn}(x), (d(x_1), d(x_2), \cdots, d(x_{n-1}))\|_p \right] \subset \Lambda_{fp}^{q}, \|\mu_{mn}(x), (d(x_1), d(x_2), \cdots, d(x_{n-1}))\|_p.
\]
Proof: The proof follows from Proposition 3.8.

3.8. **Proposition.** The sequence space \(\left[\Lambda_{fp}^{q}, \|\mu_{mn}(x), (d(x_1), d(x_2), \cdots, d(x_{n-1}))\|_p \right] \) is solid

Proof: Let \(x = (x_{mn}) \in \left[\Lambda_{fp}^{q}, \|\mu_{mn}(x), (d(x_1), d(x_2), \cdots, d(x_{n-1}))\|_p \right] \), (i.e.)
\[
\sup_{mn} \left[\Lambda_{fp}^{q}, \|\mu_{mn}(x), (d(x_1), d(x_2), \cdots, d(x_{n-1}))\|_p \right] < \infty.
\]
Let \((\alpha_{mn}) \) be double sequence of scalars such that \(|\alpha_{mn}| \leq 1 \) for all \(m, n \in \mathbb{N} \times \mathbb{N} \). Then we get
\[
\sup_{mn} \left[\Lambda_{fp}^{q}, \|\mu_{mn}(\alpha x), (d(x_1), d(x_2), \cdots, d(x_{n-1}))\|_p \right] \leq \sup_{mn} \left[\Lambda_{fp}^{q}, \|\mu_{mn}(x), (d(x_1), d(x_2), \cdots, d(x_{n-1}))\|_p \right] .
\]
This completes the proof.

3.9. **Proposition.** The sequence space \(\left[\Lambda_{fp}^{q}, \|\mu_{mn}(x), (d(x_1), d(x_2), \cdots, d(x_{n-1}))\|_p \right] \) is monotone

Proof: The proof follows from Proposition 3.8.

3.10. **Proposition.** If \(f = (f_{mn}) \) be any Musielak function. Then
\[
\left[\Lambda_{fp}^{q}, \|\mu_{mn}(x), (d(x_1), d(x_2), \cdots, d(x_{n-1}))\|_p \right] \subset \Lambda_{fp}^{q}, \|\mu_{mn}(x), (d(x_1), d(x_2), \cdots, d(x_{n-1}))\|_{p^*} \]
if and only if \(\sup_{r,s} \frac{\phi_{rs}^*}{\phi_{rs}^*} \leq \frac{1}{\phi_{rs}^*} < \infty \).

Proof: Let \(x \in \left[\Lambda_{fp}^{q}, \|\mu_{mn}(x), (d(x_1), d(x_2), \cdots, d(x_{n-1}))\|_p \right] \) and \(N = \sup_{r,s} \frac{\phi_{rs}^*}{\phi_{rs}^*} \). Then we get
\[
\left[\Lambda_{fp}^{q}, \|\mu_{mn}(x), (d(x_1), d(x_2), \cdots, d(x_{n-1}))\|_{p^*} \right] = N \left[\Lambda_{fp}^{q}, \|\mu_{mn}(x), (d(x_1), d(x_2), \cdots, d(x_{n-1}))\|_{p^*} \right] = 0.
\]
Thus \(x \in \left[\Lambda_{fp}^{q}, \|\mu_{mn}(x), (d(x_1), d(x_2), \cdots, d(x_{n-1}))\|_{p^*} \right] \). Conversely, suppose that
\[
\left[\Lambda_{fp}^{q}, \|\mu_{mn}(x), (d(x_1), d(x_2), \cdots, d(x_{n-1}))\|_{p^*} \right] \subset \left[\Lambda_{fp}^{q}, \|\mu_{mn}(x), (d(x_1), d(x_2), \cdots, d(x_{n-1}))\|_{p^*} \right]
\]
\[
\left[\Lambda_{fp}^{q}, \|\mu_{mn}(x), (d(x_1), d(x_2), \cdots, d(x_{n-1}))\|_{p^*} \right] \text{ and } x \in \left[\Lambda_{fp}^{q}, \|\mu_{mn}(x), (d(x_1), d(x_2), \cdots, d(x_{n-1}))\|_{p^*} \right].
\]
Then
\[
\left[\Lambda_{fp}^{q}, \|\mu_{mn}(x), (d(x_1), d(x_2), \cdots, d(x_{n-1}))\|_{p^*} \right] < \epsilon, \text{ for every } \epsilon > 0. \text{ Suppose that } \sup_{r,s} \frac{\phi_{rs}^*}{\phi_{rs}^*} = \infty, \text{ then there exists a sequence of members } (r_{s,j,k}) \text{ such that } \lim_{j,k \to \infty} \frac{\phi_{rs}^*}{\phi_{rs}^*} = \infty. \text{ Hence, we have}
\]
\[
\left[\Lambda_{fp}^{q}, \|\mu_{mn}(x), (d(x_1), d(x_2), \cdots, d(x_{n-1}))\|_{p^*} \right] = \infty. \text{ Therefore}
\]
\[
x \notin \left[\Lambda_{fp}^{q}, \|\mu_{mn}(x), (d(x_1), d(x_2), \cdots, d(x_{n-1}))\|_{p^*} \right] , \text{ which is a contradiction. This completes the proof.}
3.11. Proposition. If \(f = (f_{mn}) \) be any Musielak function. Then
\[
\left[\Lambda_{fpq}^2 \| \mu_{mn} (x), (d (x_1), d (x_2), \ldots, d (x_{n-1})) \|_{p^*} \right] =
\left[\Lambda_{fpq}^2 \| \mu_{mn} (x), (d (x_1), d (x_2), \ldots, d (x_{n-1})) \|_{p^*} \right]
\] if and only if \(\sup_{r,s} \geq 1 \frac{2 \epsilon}{m^2} < \infty \), \(\sup_{r,s} \geq 1 \frac{2 \epsilon}{m^2} > \infty \).

Proof: It is easy to prove so we omit.

3.12. Proposition. The sequence space \(\left[\chi_{fpq}^2 \| \mu_{mn} (x), (d (x_1), d (x_2), \ldots, d (x_{n-1})) \|_{p} \right] \) is not solid

Proof: The result follows from the following example.

Example: Consider
\[
x = (x_{mn}) = \begin{pmatrix}
1 & 1 & \ldots & 1 \\
1 & 1 & \ldots & 1 \\
\vdots & \vdots & & \vdots \\
1 & 1 & \ldots & 1 \\
\end{pmatrix}
\]
then \(\alpha_{mn} = \begin{pmatrix}
-1^{m+n} & -1^{m+n} & \ldots & -1^{m+n} \\
-1^{m+n} & -1^{m+n} & \ldots & -1^{m+n} \\
\vdots & \vdots & & \vdots \\
-1^{m+n} & -1^{m+n} & \ldots & -1^{m+n} \\
\end{pmatrix} \), for all \(m,n \in \mathbb{N} \).

Then \(\alpha_{mn} x_{mn} \notin \left[\chi_{fpq}^2 \| \mu_{mn} (x), (d (x_1), d (x_2), \ldots, d (x_{n-1})) \|_{p} \right] \). Hence \(\left[\chi_{fpq}^2 \| \mu_{mn} (x), (d (x_1), d (x_2), \ldots, d (x_{n-1})) \|_{p} \right] \) is not solid.

3.13. Proposition. The sequence space \(\left[\chi_{fpq}^2 \| \mu_{mn} (x), (d (x_1), d (x_2), \ldots, d (x_{n-1})) \|_{p} \right] \) is not monotone

Proof: The proof follows from Proposition 3.12.

A sequence \(x = (x_{mn}) \) is said to be \(\varphi - \) statistically convergent or \(s_{\varphi} - \) statistically convergent to 0 if for every \(\epsilon > 0 \),
\[
\lim_{r \to \infty} \left\{ \left[f_{mn} \left(\| \mu_{mn} (x), (d (x_1), d (x_2), \ldots, d (x_{n-1})) \|_{p} \right) \right]^{q_{mn}} \right\} \geq \epsilon = 0
\]
where the vertical bars indicates the number of elements in the enclosed set. In this case we write \(s_{\varphi} - \lim x = 0 \) or \(x_{mn} \to 0 (s_{\varphi}) \) and \(s_{\varphi} = \{ x : \exists 0 \in \mathbb{R} : s_{\varphi} - \lim x = 0 \} \).

3.14. Proposition. For any sequence of Musielak functions \(f = (f_{mn}) \) and \(p = (p_{mn}) \) be double analytic sequence of strictly positive real numbers. Then
\[
\left[\chi_{fpq}^2 \| \mu_{mn} (x), (d (x_1), d (x_2), \ldots, d (x_{n-1})) \|_{p} \right] \subset
\left[\chi_{fpq}^2 \| \mu_{mn} (x), (d (x_1), d (x_2), \ldots, d (x_{n-1})) \|_{p} \right]
\]
Proof: Let \(x \in \left[x_{f^p}^{2q}, \|\mu_{mn}(x), (d(x_1), d(x_2), \ldots, d(x_{n-1}))\|_p \right] \) and \(\epsilon > 0 \). Then
\[
\left[f_{mn} \left(\|\mu_{mn}(x), (d(x_1), d(x_2), \ldots, d(x_{n-1}))\|_p \right) \right] \
\geq \left\{ \left[f_{mn} \left(\|\mu_{mn}(x), (d(x_1), d(x_2), \ldots, d(x_{n-1}))\|_p \right) \right] \right\} \geq \epsilon
\]
from which it follows that \(x \in \left[s_{f^p}^{2q}, \|\mu_{mn}(x), (d(x_1), d(x_2), \ldots, d(x_{n-1}))\|_p \right] \).

To show that \(s_{f^p}^{2q}, \|\mu_{mn}(x), (d(x_1), d(x_2), \ldots, d(x_{n-1}))\|_p \) strictly contain
\[
\left[\chi_{f^p}^{2q}, \|\mu_{mn}(x), (d(x_1), d(x_2), \ldots, d(x_{n-1}))\|_p \right].
\]
We define \(x = (x_{mn}) \) by \((x_{mn}) = mn \) if \(rs - \sqrt{\frac{r}{s}} + mn \leq rs \) and \((x_{mn}) = 0 \) otherwise. Then
\[
x \notin \left[\chi_{f^p}^{2q}, \|\mu_{mn}(x), (d(x_1), d(x_2), \ldots, d(x_{n-1}))\|_p \right]
\]
and for every \(\epsilon (0 < \epsilon \leq 1) \),
\[
\left\{ \left[f_{mn} \left(\|\mu_{mn}(x), (d(x_1), d(x_2), \ldots, d(x_{n-1}))\|_p \right) \right] \right\} = \frac{\sqrt{\frac{r}{s}} + mn}{\sqrt{\frac{r}{s}} - mn} \to 0 \text{ as } r, s \to \infty
\]
i.e. \(x \to \left(s_{f^p}^{2q}, \|\mu_{mn}(x), (d(x_1), d(x_2), \ldots, d(x_{n-1}))\|_p \right) \), where \(\| \) denotes the greatest integer function. On the other hand,
\[
\left[f_{mn} \left(\|\mu_{mn}(x), (d(x_1), d(x_2), \ldots, d(x_{n-1}))\|_p \right) \right] \to \infty \text{ as } r, s \to \infty
\]
i.e. \(x_{mn} \not\to 0 \left[\chi_{f^p}^{2q}, \|\mu_{mn}(x), (d(x_1), d(x_2), \ldots, d(x_{n-1}))\|_p \right]. \) This completes the proof.

3.15. Theorem. Suppose \(f' = \left(f'_{mn} \right) \) and \(f'' \) are Musielak-modulus functions satisfying the \(\Delta_2 \)-condition then we have the following results:
(i) If \((p_{mn}) \in \Lambda^2 \) then \(\chi_{f^p}^{2q} (\Delta_m^n) \subseteq \chi_{f_p^{f'}}^{2q} (\Delta_m^n) \)
(ii) \(\chi_{f^p}^{2q} (\Delta_m^n) \cap \chi_{f^p}^{2q} (\Delta_m^n) \subseteq \chi_{f^p}^{2q} (\Delta_m^n) \).

Proof: If \(x = (x_{mn}) \in \chi_{f^p}^{2q} (\Delta_m^n) \) then
\[
\left[f^'_{mn} \left(\|\mu_{mn}(x), (d(x_1), d(x_2), \ldots, d(x_{n-1}))\|_p \right) \right] \to 0 \text{ as } m, n \to \infty.
\]
Suppose
\[
y_{mn} = \left[f^'_{mn} \left(\|\mu_{mn}(x), (d(x_1), d(x_2), \ldots, d(x_{n-1}))\|_p \right) \right] \text{ for all } m, n \in \mathbb{N}.
\]
Choose \(\delta > 0 \) be such that \(0 < \delta < 1 \), then for \(y_{mn} \geq \delta \) we have \(y_{mn} < \frac{y_{mn}}{\delta} < 1 + \frac{y_{mn}}{\delta} \). Now \(f'' \) satisfies \(\Delta_2 \)-condition so that there exists \(J \geq 1 \) such that
\[
f''_{mn} \left(\frac{y_{mn}}{\delta} \right) f''_{mn} \left(2 \right) = \frac{y_{mn}}{\delta} f''_{mn} \left(2 \right).
\]
We obtain
\[
\left[\left(f''_{mn} \circ f''_{mn} \right) \left(\|\mu_{mn}(x), (d(x_1), d(x_2), \ldots, d(x_{n-1}))\|_p \right) \right] = \left[f^' \left(f^'_{mn} \left(\|\mu_{mn}(x), (d(x_1), d(x_2), \ldots, d(x_{n-1}))\|_p \right) \right) \right] = \left[f^'_{mn} \left(\|\mu_{mn}(y_{mn}), (d(x_1), d(x_2), \ldots, d(x_{n-1}))\|_p \right) \right] \to 0, \text{ as } m, n \to \infty.
\]
Similarly, we can prove the other cases.
(ii) Suppose \(x = (x_{mn}) \in \chi_{f^p}^{2q} (\Delta_m^n) \cap \chi_{f^p}^{2q} (\Delta_m^n) \), then
\[
\left[f^'_{mn} \left(\|\mu_{mn}(x), (d(x_1), d(x_2), \ldots, d(x_{n-1}))\|_p \right) \right] \to 0 \text{ as } m, n \to \infty.
\]
The difference of χ^2 over p-metric spaces defined by Musielak

$$\left[f''_{mn} \left(\|\mu_{mn}(x), (d(x_1), d(x_2), \ldots, d(x_{n-1}))\|_p\right)\right] \to 0 \text{ as } m, n \to \infty.$$

The above inequality follows

$$\left(f''_{mn} \circ f'_{mn}\right) \left(\|\mu_{mn}(x), (d(x_1), d(x_2), \ldots, d(x_{n-1}))\|_p\right) \leq D \left\{\left[f''_{mn} \left(\|\mu_{mn}(x), (d(x_1), d(x_2), \ldots, d(x_{n-1}))\|_p\right)\right] + \left[f'_{mn} \left(\|\mu_{mn}(x), (d(x_1), d(x_2), \ldots, d(x_{n-1}))\|_p\right)\right]\right\}.$$

Hence $\chi^{2q}_{f''} (\Delta^n_m) \cap \chi^{2q}_{f''} (\Delta^n_m) \subseteq \chi^{2q}_{f' + f''} (\Delta^n_m)$.

Competing Interests: Author have declared that no competing interests exist.

References

The difference of χ^2 over p-metric spaces defined by Musielak

Received: June 1, 2013