Discrete Multi-target Linear-quadratic Control Problem and Quadratic Programming1

K. Khunsmuth and T. Mouktonglang2

Department of Mathematics, Faculty of Science
Chiang Mai University, Chiang Mai 50220, Thailand

Copyright © 2013 K. Khunsmuth and T. Mouktonglang. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Abstract

We consider a discrete multi-target linear-quadratic control problem. We reduce the problem into a quadratic programming over a simplex. Computing the coefficients of the cost function requires knowing the descriptions of the orthogonal project onto the vector space Z and the orthogonal complement Z^\perp of the vector space Z.

Mathematics Subject Classification: 47H09; 47H10

Keywords: Infinite dimension interior point method; Multi-criteria linear-quadratic control

1 Introduction

Let $(H, <, >)$ be a Hilbert space, Z be its closed vector subspace, h_1, \cdots, h_m and c be vectors in H. Consider the following optimization problem:

\[
\max_{1 \leq i \leq m} \|h - h_i\| \rightarrow \min, \quad h \in c + Z, \tag{1}
\]

where $\| \cdot \|$ is the norm in a hilbert space H induced by the inner product $<, >$. This problem was considered in a classical optimal control theory known as a

1This research was supported by the Chiang Mai University, Thailand, 50220.
2Corresponding author: thanasak.m@cmu.ac.th
tracking problem or Multi-target linear quadratic problem (MTLQP). According to this notation, there are \(m \) targets and we wish to track these targets using a given linear system with a quadratic cost function. A more general version of this problem where the cost function is a general quadratic function is studied in [3] and it is called multi criteria linear quadratic control problem (MCLQP). A solution to MCLQP is also fully described [3] with the help of infinite dimensional interior-point method. A decent direction is calculated on each iteration. It is shown that the approximated solution approaches to the optimal solution. In [2], Faybusovich and Mouktonglang analyzed (1) using duality theory for infinite-dimensional second-order cone programming. They obtain a reduction of this problem to a finite dimensional second-order cone programming and apply this result to a multi-target linear-quadratic control problem on a finite time interval. Later on, [4] considers a reduction (1) to even simpler optimization problem of minimization of convex quadratic function on the \((m-1)\) dimensional simplex. Then by applying this result to the analysis of a continuous version of multi-target linear-quadratic control problem on semi-infinite time interval, they show that the coefficients of the quadratic function admitted a simple expressions in term of the original data. In this paper, we apply the result of the reduction to a discrete version of multi-target linear-quadratic control problem. We also show that the coefficients of the quadratic function admitted a simple expressions in term of the original data.

2 Reduction to a simple quadratic programming problem

The reduction to a quadratic programming problem over a simplex was completely described in full details in [4]. For the completeness of the paper, we shortly describe the reduction in this section. For more details, see [4].

Let \(f_i(h) = \|h - h_i\|^2, i = 1, 2, \ldots, m \). One can easily see that (1) is equivalent to the following optimization problem

\[
\begin{align*}
 z & \rightarrow \min, \\ \\
 f_i(h) & \leq z, i = 1, 2, \ldots, m, \\ \\
 h & \in c + Z.
\end{align*}
\]
Consider the Lagrange function
\[
\mathcal{L}(\lambda_1, \cdots, \lambda_m, h, z) = z + \sum_{i=1}^{m} \lambda_i (f_i(h) - z)
\]
\[
= z(1 - \sum_{i=1}^{m} \lambda_i) + \sum_{i=1}^{m} \lambda_i f_i(h).
\]

The optimality conditions for (2) - (4) take the form
\[
\lambda_i \geq 0, \quad \lambda_i (f_i(h) - z) = 0, \quad i = 0, 1, 2, \cdots, m,
\]
\[
\frac{\partial \mathcal{L}}{\partial z} = 0, \quad \sum_{i=1}^{m} \lambda_i \nabla f_i(h) \in Z^\perp,
\]
where \(\nabla f_i(h) = 2(h - h_i), \ i = 1, 2, \cdots, m, \ Z^\perp \) is the orthogonal complement of \(Z \) in \(H \). Conditions (5), (6) imply that
\[
\sum_{i=0}^{m} \lambda_i = 1, \quad \lambda_i \geq 0, \quad i = 1, 2, \cdots, m,
\]
\[
\pi_Z(h) = \sum_{i=1}^{m} \lambda_i (\pi_Z h_i),
\]
where \(\pi_Z : H \to Z \) is the orthogonal projection onto \(Z \). Similarly, \(\pi_{Z^\perp} : H \to Z^\perp \) is the orthogonal projection onto \(Z^\perp \) of \(Z \). Then the Lagrange dual of (2), (3),(4) takes the form
\[
\varphi(\lambda_1, \lambda_2, \cdots, \lambda_m) = \min\{\mathcal{L}(\lambda_1, \cdots, \lambda_m, h, z) : h \in c + Z, z \in Z\}.
\]
Using (7), (8), we obtain
\[
\varphi(\lambda_1, \lambda_2, \cdots, \lambda_m) = \sum_{i=1}^{m} \lambda_i f_i(h(\lambda_1, \cdots, \lambda_m))
\]
where
\[
h(\lambda_1, \cdots, \lambda_m) = \pi_{Z^\perp}(c) + \sum_{i=1}^{m} \lambda_i \pi_Z(h_i).
\]
For simplicity, we let
\[h(\lambda) = \sum_{i=1}^{m} \lambda_i h_i. \]
Then
\[f_j(h(\lambda_1, \cdots, \lambda_m)) = \|\pi_Z(h(\lambda))\|^2 + \|\pi_Z(h_j)\|^2 - 2 < \pi_Z(h(\lambda)), \pi_Z(h_j) > + \|\pi_{Z\perp}(c - h_j)\|^2. \]
Hence, according to (9)
\[\varphi(\lambda_1, \cdots, \lambda_m) = \|\pi_Z(h(\lambda))\|^2 + \sum_{j=1}^{m} \lambda_j \|\pi_Z(h_j)\|^2 - 2 < \pi_Z(h(\lambda)), \pi_Z(h(\lambda)) > + \sum_{j=1}^{m} \lambda_j \|\pi_{Z\perp}(c - h_j)\|^2. \]
We, hence, arrive at the following expression of \(\varphi \):
\[\varphi(\lambda_1, \cdots, \lambda_m) = -\|\pi_Z\left(\sum_{i=1}^{m} \lambda_i h_i\right)\|^2 + \sum_{j=1}^{m} \lambda_j (\|\pi_Z(h_j)\|^2 + \pi_{Z\perp}(c - h_j)\|^2). \]
(11)
We can simplify (11) further. Notice that
\[\|\pi_{Z\perp}(c - h_j)\|^2 = \|\pi_{Z\perp}(c)\|^2 + \|\pi_{Z\perp}(h_j)\|^2 - 2 < \pi_{Z\perp}(c), \pi_{Z\perp}(h_j) >. \]
Consequently,
\[\varphi(\lambda_1, \cdots, \lambda_m) = -\|\pi_Z(h(\lambda))\|^2 + \sum_{j=1}^{m} \lambda_j \|h_j\|^2 - 2 < \pi_{Z\perp}(c), \pi_{Z\perp}(h(\lambda)) > + \|\pi_{Z\perp}(c)\|^2 \]
\[= -\|h(\lambda)\|^2 + \|\pi_{Z\perp}(h(\lambda) - c)\|^2 + \sum_{j=1}^{m} \lambda_j \|h_j\|^2 \] (12)
Here,
\[h(\lambda) = \sum_{i=1}^{m} \lambda_i h_i. \]
Hence, the Lagrange dual to (2), (3), (4) takes the form:
\[\varphi(\lambda_1, \cdots, \lambda_m) \rightarrow \max, \quad (13) \]

\[\sum_{i=1}^{m} \lambda_i = 1, \quad \lambda_i \geq 0, \quad i = 1, 2, \cdots, m. \quad (14) \]

The problem (13)-(14) is known as a quadratic programming over a simplex.

3 Discrete linear-quadratic control problem

In this section, we consider the discrete time formulation for the problem (1). For simplicity, let us introduce some useful notations. Let \(x \) denote a sequence \(x = \{x_k\} \subset \mathbb{R}^n \) for \(k = 0, 1, 2, \ldots, \infty \). We say that \(x \in l^2_n(N) \) if \(\sum_{i=1}^{\infty} \|x_i\|^2 < \infty \), where \(\|\cdot\| \) is a norm induced by an inner product \(\langle \cdot, \cdot \rangle \) in \(\mathbb{R}^n \). Let \((x, u) \in l^2_n(N) \times l^2_m(N) \). We let the pair \((x, u) \in Z \), where \(Z \) is a vector subspace of the Hilbert space \(l^2_n(N) \times l^2_m(N) \). Observe now the inner product in \(H \) has the following form:

\[\langle (x, y), (u, \nu) \rangle_H = \sum_{k=0}^{\infty} \left\{ \langle x_k, u_k \rangle + \langle y_k, \nu_k \rangle \right\} \]

The vector subspace \(Z \) now takes the form:

\[Z = \{(x, u) \in H : x_{k+1} = Ax_k + Bu_k, k = 0, 1, 2, \ldots, x_0 = 0\} \]

Here \(A \) is an \(n \) by \(n \) matrix, and \(B \) is an \(n \) by \(m \) matrix.

The solution to this particular class of optimization problems can be completely described by solving system of recurrence relations and the following well known discrete algebraic Riccati equation (DARE):

\[K = A^T KA - A^T KB (I + B^T KB)^{-1} (A^T KB)^T + I \]

We assume that this DARE has a positive definite stabilizing solution \(K_{st} \). For sufficient conditions, see [4]. For simplicity, we let

\[\overline{T} = (I + B^T KB) \]

and we also let

\[L = B^T \overline{T}^{-1} B^T. \]

Then the next theorem describes the orthogonal complement \(Z^\perp \) of \(Z \).
Theorem 3.1. The orthogonal complement \mathcal{Z}^\perp of \mathcal{Z} is described as follows:

$$\mathcal{Z}^\perp = \{(A^T p_k - p_{k-1}, B^T p_k); \{p_k\} \in l_2^0(\mathbb{N}), \text{for } k = 0, 1, 2, \ldots\}.$$

i.e. given $(\psi_k, \varphi_k) \in H$, we have

$$\psi_k = x_k - (A^T p_k - p_{k-1}), \quad (15)$$

$$\varphi_k = u_k - B^T p_k, \quad (16)$$

where x_k is the solution

$$x_{k+1} = (A^T - A^T KL)^T x_k + L\rho_{k+1} + B\mathcal{T}^{-1} \varphi_k, \quad (17)$$

$$u_k = -\mathcal{T}^{-1} BKA x_k + \mathcal{T}^{-1} B T \rho_{k+1} + \mathcal{T}^{-1} \varphi_k, \quad (18)$$

$$p_k = -K x_{k+1} + \rho_{k+1}, \quad (19)$$

and ρ_k is a unique solution

$$\rho_k = (A^T + A^T KL)\rho_{k+1} - A^T KB\mathcal{T}^{-1} \varphi_k + \psi_k \quad (20)$$

belonging to $l_2^0(\mathbb{N})$.

In particular, $(\{x_k\}, \{u_k\}) \in \mathcal{Z}$, $-(\{A^T p_k - p_{k-1}\}, \{B^T p_k\}) \in \mathcal{Z}^\perp$ and consequently \mathcal{Z} is a closed subspace in H with

$$\pi_{\mathcal{Z}}(\{\psi_k\}, \{\varphi_k\}) = (\{x_k\}, \{u_k\}), \quad \pi_{\mathcal{Z}^\perp}(\{\psi_k\}, \{\varphi_k\}) = -(\{A^T p_k - p_{k-1}\}, \{B^T p_k\}).$$

Proof: Let $(\{x_k\}, \{u_k\}) \in \mathcal{Z}$ and $(\{A^T p_k - p_{k-1}\}, \{B^T p_k\}) \in \mathcal{Z}^\perp$
Consider the algebraic Riccati equation [DARE]

\[K = A^T K A - A^T K L K A + I. \] (21)

We are now looking for \(p_k \) in the form

\[p_{k-1} = -K x_k + \rho_k. \]

Hence by (20),

\[p_{k-1} = -K x_k + (A^T - A^T K L) \rho_{k+1} - A^T K B T^{-1} \varphi_k + \psi_k \]

\[= -K x_k + A^T \rho_{k+1} - A^T K L \rho_{k+1} - A^T K B T^{-1} \varphi_k + \psi_k. \]
Then it follows that
\[
A^T p_k - p_{k-1} = A^T [-Kx_{k+1} + \rho_{k+1}] - p_{k-1}
\]
\[
= -A^T Kx_{k+1} + A^T \rho_{k+1} + Kx_k - A^T \rho_{k+1} + A^T KL\rho_{k+1}
\]
\[
+ A^T KB^T \varphi_k - \psi_k
\]
\[
= -A^T K[(A^T - A^T KL)^T x_k + L\rho_{k+1} + B^T \varphi_k] + Kx_k + A^T KL\rho_{k+1}
\]
\[
+ A^T KB^T \varphi_k - \psi_k
\]
\[
= -A^T KA x_k + A^T KL Ax_k - A^T KL\rho_{k+1} - A^T KB^{-1} \varphi_k + Kx_k
\]
\[
+ A^T KL\rho_{k+1} + A^T KB^{-1} \varphi_k - \psi_k
\]
\[
= [-A^T kA + A^T KLKA + K] x_k - \psi_k
\]
By using now the fact that \(K_{st} \) satisfies (21), we obtain:
\[
A^T p_k - p_{k-1} = x_k - \psi_k
\]
which is (15). By using (18), we obtain
\[
u_k - B^T p_k = -B^T KA x_k - B^T KBu_k + B^T \rho_{k+1} + \varphi_k - B^T [-Kx_{k+1} + \rho_{k+1}]
\]
\[
= -B^T KA x_k - B^T KBu_k + B^T \rho_{k+1} + \varphi_k + B^T Kx_{k+1} - B^T \rho_{k+1}
\]
\[
= -B^T [Ax_k + Bu_k - x_{k+1}] + \varphi_k
\]
which is (16). Finally, by simple calculation, for \(x_k \) and \(u_k \) defined by (17), (18), we have \(x_{k+1} = Ax_k + Bu_k \). Then the proof is completed.

Theorem 3.2. Let \(h = (\psi, \varphi) = (\{\psi_k\}, \{\varphi_k\}) \) \(\in H \) and \(\rho \in L^2_0[0, \infty) \) is the function entering the decomposition (15) and (16) and described in (20). Then

\[
\| \pi_Z(h) \|^2 = \| C(B^T \rho + \varphi) \|^2,
\]
\[
\| \pi_{Z^\perp}(h) \|^2 = \| h \|^2 - \| C(B^T \rho + \varphi) \|^2.
\]

Proof: Let \((\{y_k\}, \{\nu_k\}) \) \(\in Z \) and

\[
\Delta(y_k, \nu_k) = [\nu_k + B^T(KAy_k - \rho_{k+1}) - T^{-1} \varphi_k]^T T[\nu_k + B^T(KAy_k - \rho_{k+1}) - T^{-1} \varphi_k]
\]
\[
= \Delta_1 + \Delta_2 + \Delta_3
\]
where
\[
\Delta_1 = (\nu_k - T^{-1} \varphi_k)^T T(\nu_k - T^{-1} \varphi_k),
\]
\[\Delta_2 = (KAy_k - \rho_{k+1})^T L(KAy_k - \rho_{k+1}), \]
\[\Delta_3 = 2(KAy_k - \rho_{k+1})^T B(v_k - \varphi_k). \]

Hence,

\[\Delta_1 = \nu_k^T \nu_k - 2\nu_k^T \varphi_k + \varphi_k^T \varphi_k \]
\[= \nu_k^T (I + B^T KB)\nu_k - 2\nu_k^T \varphi_k + \varphi_k^T \varphi_k \]
\[= \nu_k^T \nu_k + \nu_k^T B^T KB\nu_k - 2\nu_k^T \varphi_k + \varphi_k^T \varphi_k \]
\[= (\nu_k - \varphi_k)^T (\nu_k - \varphi_k) - \varphi_k^T \varphi + (y_{k+1} - Ay_k)^T K(y_{k+1} - Ay_k) + \varphi_k^T \varphi_k \]
\[= (\nu_k - \varphi_k)^T (\nu_k - \varphi_k) + y_{k+1}^T K y_{k+1} - 2y_{k+1}^T KAy_k + y_k^T A^T KAy_k - \varphi_k^T \varphi_k \]
\[+ \varphi_k^T \varphi_k \]
\[\Delta_2 = y_k^T A^T KLKAy_k - 2y_k^T A^T KL \rho_{k+1} + \rho_{k+1}^T L \rho_{k+1} \]
\[\Delta_3 = 2y_k^T A^T KB\nu_k - 2\rho_{k+1}^T B\nu_k - 2y_k^T A^T KB \varphi_k + 2\rho_{k+1}^T B \varphi_k \]
\[= 2y_k^T A^T K(y_{k+1} - Ay_k) - 2\rho_{k+1}^T (y_{k+1} - Ay_k) - 2y_k^T A^T KB \varphi_k \]
\[+ 2\rho_{k+1}^T B \varphi_k \]
\[= 2y_k^T A^T K y_{k+1} - 2y_k^T A^T KAy_k - 2\rho_{k+1}^T y_{k+1} + 2\rho_{k+1}^T Ay_k \]
\[- 2y_k^T A^T KB \varphi_k + 2\rho_{k+1}^T B \varphi_k \]

\[\Delta(y_k, \nu_k) = (\nu_k - \varphi_k)^T (\nu_k - \varphi_k) + y_{k+1}^T K y_{k+1} - 2y_{k+1}^T K Ay_k + y_k^T A^T K Ay_k \]
\[- \varphi_k^T \varphi_k + \varphi_k^T \varphi_k + y_k^T A^T KLKAy_k - 2y_k^T A^T KL \rho_{k+1} \]
\[+ \rho_{k+1}^T L \rho_{k+1} + 2y_k^T A^T K y_{k+1} - 2y_k^T A^T K Ay_k - 2\rho_{k+1}^T y_{k+1} \]
\[+ 2\rho_{k+1}^T Ay_k - 2y_k^T A^T KB \varphi_k + 2\rho_{k+1}^T B \varphi_k \]
\[= (\nu_k - \varphi_k)^T (\nu_k - \varphi_k) - y_k^T [A^T KA - A^T KLKA] y_k \]
\[+ 2y_k^T [A^T - A^T KL] \rho_{k+1} + y_{k+1}^T K y_{k+1} - \varphi_k^T \varphi_k + \varphi_k^T \varphi_k \]
\[+ \rho_{k+1}^T L \rho_{k+1} - 2\rho_{k+1}^T y_{k+1} - 2y_k^T A^T KB \varphi_k \]
\[+ 2\rho_{k+1}^T B \varphi_k \]

Since \(A^T KA - A^T KLKA = K - I \), and

\[[A^T - A^T KL] \rho_{k+1} = \rho_k + A^T KB \varphi_k - \psi_k, \]

we have
\[\Delta(y_k, \nu_k) = (\nu_k - \varphi_k)^T(\nu_k - \varphi_k) + y_k^T[K - I]y_k + 2y_k^T[\rho_k + A^TKB\mathbf{T}^{-1}\varphi_k - \psi_k] \\
+ y_{k+1}^TKy_{k+1} - \varphi_k^T\varphi_k + \varphi_k^T\mathbf{T}^{-1}\varphi_k + \rho_{k+1}^T\rho_{k+1} - 2\rho_{k+1}^Ty_{k+1} \]

\[= (\nu_k - \varphi_k)^T(\nu_k - \varphi_k) + y_k^TKy_k + y_k^T\rho_k - 2y_k^T\psi_k \\
+ y_{k+1}^TKy_{k+1} - \varphi_k^T\varphi_k + \varphi_k^T\mathbf{T}^{-1}\varphi_k + \rho_{k+1}^T\rho_{k+1} - 2\rho_{k+1}^Ty_{k+1} \]

\[+ 2\rho_{k+1}^T\mathbf{T}^{-1}\varphi_k \]

\[= (\nu_k - \varphi_k)^T(\nu_k - \varphi_k) + (y_k - \psi_k)^T(y_k - \psi_k) - \psi_k^T\psi_k - \varphi_k^T\varphi_k \\
+ \varphi_k^T\mathbf{T}^{-1}\varphi_k + \rho_{k+1}^T\mathbf{T}^{-1}\mathbf{T}^T\rho_{k+1} + 2\rho_{k+1}^T\mathbf{T}^{-1}\varphi_k \\
- y_k^TKy_k + y_k^T\rho_k - 2\rho_k^Ty_k - 2\rho_{k+1}^Ty_{k+1} \]

\[= (\nu_k - \varphi_k)^T(\nu_k - \varphi_k) + (y_k - \psi_k)^T(y_k - \psi_k) - (\psi_k^T\psi_k + \varphi_k^T\varphi_k) \\
+ (\mathbf{T}^T\rho_{k+1} + \varphi_k)^T(\mathbf{T}^T\rho_{k+1} + \varphi_k) \\
- y_k^TKy_k + y_k^T\rho_k + 2\rho_k^Ty_k - 2\rho_{k+1}^Ty_{k+1} \]

Notice, since we fixed \(x_0 \), we can let \(y_0 = x_0 \) and then take summation of both sides:

\[\sum_{k=0}^{\infty} \Delta(y_k, \nu_k) = \sum_{k=0}^{\infty}[(\nu_k - \varphi_k)^T(\nu_k - \varphi_k) + (y_k - \psi_k)^T(y_k - \psi_k)] - \sum_{k=0}^{\infty}[\psi_k^T\psi_k + \varphi_k^T\varphi_k] \]

\[+ \sum_{k=0}^{\infty}[(\mathbf{T}^T\rho_{k+1} + \varphi_k)^T(\mathbf{T}^T\rho_{k+1} + \varphi_k)] - x_0^TKx_0 + 2\rho_0^Tx_0 \]

Using the fact that \(x_0 = 0 \)

\[\sum_{k=0}^{\infty} \Delta(y_k, \nu_k) = \|(y_k - \psi_k, \nu_k - \varphi_k)\|^2 - \|(\psi_k, \varphi_k)\|^2 + \|C(\mathbf{T}^T\rho_{k+1} + \varphi_k)\|^2 \]

By the definition of \(\Delta(y_k, \nu_k), \Delta(x_k, u_k) = 0. \) Therefore

\[0 = \|(y_k - \psi_k, \nu_k - \varphi_k)\|^2 - \|(\psi_k, \varphi_k)\|^2 + \|C(\mathbf{T}^T\rho_{k+1} + \varphi_k)\|^2 \]

Since \(\Delta(y_k, \nu_k) = \pi(\psi_k, \varphi_k) \)

\[\|(\psi_k, \varphi_k)\|^2 = \|C(\mathbf{T}^T\rho_{k+1} + \varphi_k)\|^2 + \|\pi_Z(\psi_k, \varphi_k)\|^2 \]

Hence,

\[\|\pi_Z(\psi_k, \varphi_k)\|^2 = \|C(\mathbf{T}^T\rho_{k+1} + \varphi_k)\|^2. \]
That completes the proof.

We are now in the position to compute the coefficients for the quadratic cost function φ. Since

$$\varphi(\lambda_1, \cdots, \lambda_m) = -\|h(\lambda)\|^2 + \|\pi_Z(h(\lambda) - c)\|^2 + \sum_{j=1}^{m} \lambda_j \|h_j\|^2,$$ \hspace{1cm} (24)

and $h(\lambda) = \sum_{i=1}^{m} \lambda_i h_i$, then we have

$$\|h(\lambda)\|^2 = \|\pi_Z h(\lambda)\|^2 + \|\pi_Z h(\lambda)\|^2$$ \hspace{1cm} (25)

$$= \|\pi_Z(\sum_{i=1}^{m} \lambda_i h_i)\|^2 + \|\pi_Z(\sum_{i=1}^{m} \lambda_i h_i)\|^2$$ \hspace{1cm} (26)

$$= \|\sum_{i=1}^{m} \lambda_i \pi_Z h_i\|^2 + \|\sum_{i=1}^{m} \lambda_i \pi_Z h_i\|^2.$$ \hspace{1cm} (27)

Similarly, as for $\|\pi_{Z^\perp} (h(\lambda) - c)\|^2$ we can apply the theorem 2. This would allow us to express the quadratic cost function (13) in terms of given data.

4 Concluding Remarks:

In this paper, we consider the discrete multi target linear quadratic control problem. We reduce the problem into quadratice programming over a simplex. The coefficients of the cost functions can be computed by knowing the descriptions of the orthogonal project onto the vector space Z and the orthogonal complement Z^\perp of the vector space Z.

Acknowledgments: The research was supported by the Chiang Mai University, Thailand, 50200

References

Received: May 25, 2013