On a Class of Nonlinear Partial Differential Equations

Sulbha Goyal and Vinod Goyal

Department of Mathematics
Tuskegee University, Tuskegee, AL 36088, USA

Copyright © 2013 Sulbha Goyal and Vinod Goyal. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Abstract
The purpose of this paper is to obtain radial upper bounds for the solutions of nonlinear partial differential inequalities of the form

\[\Delta u \geq P(r)f(u) \]

in the annulus \(\rho B_R(0) \), centered at the origin and with radii \(\rho, R(\rho < R) \). We give criteria for the existence, nonexistence and uniqueness of solutions of certain \(2m^{th} \) order nonlinear Dirichlet type problems.

Mathematics Subject Classification: 35J25, 35P15, 35B50

Keywords: Dirichlet type problem, Symmetric Solutions, Radial bounds

1 Introduction

Many results have appeared in the literature on the subject for solutions of the nonlinear partial differential equation

\[\Delta u = f(u), \] (1)

or, more generally, the differential inequality

\[\Delta u \geq f(u). \] (2)

1su36832@yahoo.com
where Δ is the N-dimensional Laplace operator. In [3, 4, 7] conditions on f were obtained in order that a radially symmetric bound for solutions of (2) may exist. The most general conditions on f for which radially symmetric bounds for the solutions of (2) may exist are

$$f(u) > 0, f'(u) \geq 0 \text{ for } -\infty < u < \infty \quad (3)$$

$$\int_0^\infty \left[\int_0^u f(t) dt \right]^{-\frac{1}{2}} du < \infty. \quad (4)$$

In fact, if $f(u) > 0$ and $f'(u) \geq 0$, condition (4) is both necessary and sufficient. It was shown by Osserman [7] that if $\varphi(r)$ is a spherically symmetric solution of (1) i.e. a solution of the ordinary differential equation

$$\varphi''(r) + \frac{N-1}{r} \varphi'(r) = f(\varphi), \quad (5)$$

for which $\varphi'(0) = 0$ and $\varphi(r) \to \infty$ as $r \to R$ then if u is any solution of (1) for $r \leq R$, we have $u(x_1, x_2, \ldots, x_N) \leq \varphi(r)$ at each point.

In [6] Nehari used the result of Osserman to obtain explicit upper and lower bounds for solutions of (1) and (2) for certain class of functions f.

In [2] the authors showed that the function ν defined by

$$\nu = \frac{P(r)(R^2 - r^2)}{8R^2} = \int_0^\infty \frac{dt}{f(t)}, \quad (6)$$

is a radial upperbound for the solutions $u(x_1, x_2)$ of

$$\Delta u \geq P(r)f(u),$$

in an open disc $B_R(0)$ of radius R with center at the origin, where f is positive, monotone increasing, C^1 function satisfying

$$f'(u) \int_u^\infty \frac{dt}{f(t)} \leq 1, \quad (7)$$

and $P(r)$ is assumed to be positive.

Radial upper bound was also obtained for the solutions of $\Delta \omega \geq \alpha f(\omega)$, α is a positive constant in an open ball B_R where f is positive, monotone increasing, C^1 function and, in addition, satisfies the condition
On a class of nonlinear partial differential equations

\[f'(\omega) \int_{\omega}^{\infty} \frac{dt}{f(t)} \leq \frac{N + 2}{4}, \quad N \geq 3. \quad (8) \]

Here by a slight extension of Osserman’s lemma, and the theorems A and B below, we obtain radial upper bounds for the solutions of some inequalities in the annulus \(\rho B_R(0) \) centered at the origin and with radii \(\rho, R(\rho < R) \). In section 3, we give conditions for the existence, nonexistence and uniqueness of solutions of \(2m^{th} \) order nonlinear Dirichlet type boundary value problems.

We shall use the following results proved in [2]:

Theorem A: Let \(\omega \) be a positive \(C^2 \) function for which \(\Delta \omega \leq Q(x)\omega^k \), \(k > 1 \), for some positive \(Q(x) \). If \(g \) is a positive \(C^1 \) function for which

\[g'(s) \int_{s}^{\infty} \frac{dt}{g(t)} \leq \frac{k}{k - 1}, \quad (9) \]

and \(\nu \) defined by

\[\int_{\nu}^{\infty} \frac{dt}{g(t)} = \frac{1}{(k - 1)\omega^{k-1}}, \quad (10) \]

then

\[\Delta \nu \leq Q(x)g(\nu). \quad (11) \]

Theorem B: Let \(\omega \) be a positive \(C^2 \) function for which \(\Delta \omega \leq Q(x)e^\omega \) for some positive function \(Q(x) \). If \(g(x) \) is a positive \(C^1 \) function such that

\[g'(s) \int_{s}^{\infty} \frac{dt}{g(t)} \leq 1, \quad (12) \]

and \(\nu \) defined by

\[\int_{\nu}^{\infty} \frac{dt}{g(t)} = e^{-\omega} \quad (13) \]

then

\[\Delta \nu \leq Q(x)g(\nu). \quad (14) \]
2 Bound for Solutions

Let \(\rho B_R \) denote the open ring between two concentric spheres of radius \(\rho \) and \(R \) (\(\rho < R \)) respectively with center at the origin in Euclidean \(N \)-space and let \(r \) denote the distance from the origin to an arbitrary point \(x = (x_1, x_2, x_3, \ldots, x_N) \) in \(\rho B_R \).

We first prove the following Lemma:

Lemma 1. Let \(y(x_1, x_2, x_3, \ldots, x_N) \) be a \(C^2 \) function in \(\rho B_R \) defined by

\[
y = \left(\frac{\sqrt{(N + 2\lambda - 2)(N + 6\lambda - 2)}R^{2\lambda}}{\sqrt{2}(r^{2\lambda} - \rho^{2\lambda})(R^{2\lambda} - r^{2\lambda})} \right)^{\frac{N + 2\lambda - 2}{4\lambda}}, \tag{15}\]

where \(\lambda \geq 1 \) is a constant, then

\[
\Delta y \leq r^{4\lambda - 2} y^{\frac{N + 10\lambda - 2}{N + 2\lambda - 2}}. \tag{16}\]

Proof. Consider the function \(\nu \) defined by

\[
\nu = \frac{1}{(r^{2\lambda} - \rho^{2\lambda})^\alpha(R^{2\lambda} - r^{2\lambda})^\alpha}, \tag{17}\]

where \(\alpha \) is a constant to be determined later. We let \(x \) denote one of the variables \(x_k \) and differentiate (17) twice with respect to \(x \). This results in

\[
\nu_x = -\frac{2\alpha \lambda x^2 r^{2\lambda - 2}}{(r^{2\lambda} - \rho^{2\lambda})^{\alpha + 1}(R^{2\lambda} - r^{2\lambda})^\alpha} + \frac{2\alpha \lambda x r^{2\lambda - 2}}{(r^{2\lambda} - \rho^{2\lambda})^{\alpha + 1}(R^{2\lambda} - r^{2\lambda})^\alpha}
\]

\[
\nu_{xx} = -\frac{2\alpha x^2 r^{2\lambda - 2} + 4\alpha x^2 \lambda (\lambda - 1) r^{2\lambda - 4}}{(r^{2\lambda} - \rho^{2\lambda})^{\alpha + 1}(R^{2\lambda} - r^{2\lambda})^\alpha} + \frac{4\alpha x^2 \lambda^2 (\alpha + 1) r^{4\lambda - 4}}{(r^{2\lambda} - \rho^{2\lambda})^{\alpha + 1}(R^{2\lambda} - r^{2\lambda})^\alpha}
\]

\[
-\frac{2\alpha \lambda x r^{2\lambda - 2} + 4\alpha x^2 \lambda (\lambda - 1) r^{2\lambda - 4}}{(r^{2\lambda} - \rho^{2\lambda})^{\alpha + 1}(R^{2\lambda} - r^{2\lambda})^\alpha} + \frac{4\alpha x^2 \lambda^2 (\alpha + 1) r^{4\lambda - 4}}{(r^{2\lambda} - \rho^{2\lambda})^{\alpha + 1}(R^{2\lambda} - r^{2\lambda})^\alpha}
\]

\[
+ \frac{4\alpha x^2 \lambda (\lambda - 1) r^{2\lambda - 2}}{(r^{2\lambda} - \rho^{2\lambda})^{\alpha + 1}(R^{2\lambda} - r^{2\lambda})^\alpha} + \frac{4\alpha x^2 \lambda^2 (\alpha + 1) r^{4\lambda - 4}}{(r^{2\lambda} - \rho^{2\lambda})^{\alpha + 1}(R^{2\lambda} - r^{2\lambda})^\alpha}
\]

Summing over all \(x \), we get

\[
\Delta \nu = -\frac{2N\alpha \lambda x r^{2\lambda - 2} + 4\alpha \lambda (\lambda - 1) r^{2\lambda - 2}}{(r^{2\lambda} - \rho^{2\lambda})^{\alpha + 1}(R^{2\lambda} - r^{2\lambda})^\alpha} + \frac{4\alpha x^2 \lambda^2 (\alpha + 1) r^{4\lambda - 4}}{(r^{2\lambda} - \rho^{2\lambda})^{\alpha + 1}(R^{2\lambda} - r^{2\lambda})^\alpha}
\]

\[
-\frac{2N\alpha \lambda x r^{2\lambda - 2} + 4\alpha \lambda (\lambda - 1) r^{2\lambda - 2}}{(r^{2\lambda} - \rho^{2\lambda})^{\alpha + 1}(R^{2\lambda} - r^{2\lambda})^\alpha} + \frac{4\alpha x^2 \lambda^2 (\alpha + 1) r^{4\lambda - 4}}{(r^{2\lambda} - \rho^{2\lambda})^{\alpha + 1}(R^{2\lambda} - r^{2\lambda})^\alpha}
\]

\[
+ \frac{4\alpha x^2 \lambda (\lambda - 1) r^{2\lambda - 2}}{(r^{2\lambda} - \rho^{2\lambda})^{\alpha + 1}(R^{2\lambda} - r^{2\lambda})^\alpha} + \frac{4\alpha x^2 \lambda^2 (\alpha + 1) r^{4\lambda - 4}}{(r^{2\lambda} - \rho^{2\lambda})^{\alpha + 1}(R^{2\lambda} - r^{2\lambda})^\alpha}
\]
Combining 1st, 3rd, 4th and 6th terms on the right, we obtain

\[\Delta \nu = \frac{2N\lambda \alpha r^{2\lambda} - 2 - 4\lambda(\lambda - 1)}{(r^2 - \rho^2)^{\alpha + 1}(\lambda - 2\lambda)\alpha + 1} + \frac{\alpha(\alpha + 1)\lambda^2 r^{4\lambda - 2}\lambda + 2 + 8\lambda^2 \lambda^2 r^{4\lambda - 2}}{(r^2 - \rho^2)^{\alpha + 2}(\lambda - 2\lambda)\alpha + 2}. \]

Using the fact that \(\rho < r < R \), we get,

\[\Delta \nu \leq \frac{2\lambda \alpha [N + 2(\lambda - 1) - 4\lambda\alpha] r^{4\lambda - 2}}{(r^2 - \rho^2)^{\alpha + 1}(\lambda - 2\lambda)\alpha + 1} + \frac{8\lambda(\alpha + 1)\lambda^2 r^{4\lambda - 2} R^{4\lambda}}{(r^2 - \rho^2)^{\alpha + 2}(\lambda - 2\lambda)\alpha + 2}. \]

(18)

Now choose \(\alpha = \frac{N + 2\lambda - 2}{4\lambda} \), then by (17), (18) reduces to

\[\Delta \nu \leq \frac{(N + 2\lambda - 2)(N + 6\lambda - 2)}{2} r^{4\lambda - 2} R^{4\lambda} y^{1 + 8\lambda} \frac{N + 2\lambda - 2}{N + 2\lambda - 2}. \]

(19)

Next, by the change of variable

\[\nu = \left[\frac{2}{(N + 2\lambda - 2)(N + 6\lambda - 2)} \right]^{\frac{N + 2\lambda - 2}{8\lambda}} \frac{y \sqrt{N + 2\lambda - 2}}{R^{\frac{N + 2\lambda - 2}{2}}}, \]

(20)

the inequality (19) becomes

\[\Delta y \leq r^{4\lambda - 2} \frac{N + 2\lambda - 2}{y^{N + 2\lambda - 2}}, \]

where

\[y = \left(\frac{\sqrt{(N + 2\lambda - 2)(N + 6\lambda - 2) R^{2\lambda}}}{\sqrt{2}(r^2 - \rho^2)^{\lambda - 2\lambda}} \right)^{\frac{N + 2\lambda - 2}{4\lambda}}, \]

which proves the assertion. \(\square \)

As a consequence of Lemma 1, we have the following result:

Theorem 1. If \(u = u(x_1, x_2, x_3, \ldots, x_N) \) satisfies the inequality

\[\Delta u \geq r^{4\lambda - 2} f(u), \quad \lambda \geq 1 \]

(21)

where \(f(u) \) is positive, monotone increasing, \(C^1 \) function on \((0, \infty)\) such that
\[f'(u) \int_u^\infty \frac{dt}{f(t)} \leq 1 + \frac{N + 2\lambda - 2}{8\lambda}, \]
(22)

then the radial function \(\nu \) defined by

\[\int_\nu^\infty \frac{dt}{f(t)} = \frac{(r^{2\lambda} - \rho^{2\lambda})(R^{2\lambda} - r^{2\lambda})}{4\lambda R^{4\lambda}(N + 6\lambda - 2)}, \]
(23)

is such that \(u \leq \nu \) at each point in \(\rho < r < R \).

Proof. With \(k = 1 + \frac{8\lambda}{N + 2\lambda - 2} \), \(Q(x) = r^{4\lambda} - 2 \) and \(g \) replaced by \(f \) in theorem A, we conclude, by lemma 1 that

\[\Delta \nu \leq r^{4\lambda - 2} f(\nu), \]

for \(\nu \) defined by

\[\int_\nu^\infty \frac{dt}{f(t)} = \frac{(R^{2\lambda} - r^{2\lambda})(r^{2\lambda} - \rho^{2\lambda})}{4\lambda (N + 6\lambda - 2) R^{4\lambda}}. \]

Since \(\nu'(0) = 0 \) when \(\lambda > 1 \) and \(\nu \to \infty \) as \(r \to R \) or \(r \to \rho \), it follows by an extension of Osserman’s Lemma that \(u \leq \nu \) at each point of \(\rho B_R \). \(\square \)

Lemma 2. If \(w = w(x_1, x_2) \) is a \(C^2 \) function in the punctured disc \(\rho B_R \) defined by

\[w = 2\ell n \left(\frac{4\sqrt{2k} R^{2k}}{(r^{2k} - \rho^{2k})(R^{2k} - r^{2k})} \right), \]
(24)

where \(k \geq 1 \) is a constant, then

\[\Delta w \leq r^{4k - 2} e^w, \]
(25)

at every point of \(\rho B_R \).

Proof. Consider the function \(\nu \) defined by

\[e^\nu = \frac{A}{(r^{2k} - \rho^{2k})\alpha (R^{2k} - r^{2k})\alpha}, \]
(26)

where \(A \) and \(\alpha \) are constants to be determined later. We let \(x \) denote one of the variables \(x_1, x_2 \) and differentiate (26) twice with respect to \(x \). This results in
\[e^\nu \nu_x = A \left(-\frac{2k \alpha r^{2k-2}}{(r^{2k} - \rho^{2k})^{\alpha+1}(R^{2k} - r^{2k})^\alpha} + \frac{2k \alpha r^{2k-2}}{(r^{2k} - \rho^{2k})^\alpha(R^{2k} - r^{2k})^{\alpha+1}} \right), \]

(27)

\[e^\nu \nu_{xx} + e^\nu \nu_x^2 = A \left(-\frac{2k \alpha r^{2k-2} + 4k \alpha (k-1)x^2 r^{2k-4}}{(r^{2k} - \rho^{2k})^{\alpha+1}(R^{2k} - r^{2k})^\alpha} + \frac{4\alpha(\alpha+1)k^2 x^2 r^{4k-4}}{(r^{2k} - \rho^{2k})^\alpha(R^{2k} - r^{2k})^{\alpha+1}} \right.

\[\left. - \frac{4\alpha^2 k^2 x^2 r^{4k-4}}{(r^{2k} - \rho^{2k})^{\alpha+1}(R^{2k} - r^{2k})^\alpha} + \frac{2k \alpha r^{2k-2} + 4k \alpha (k-1)x^2 r^{2k-4}}{(r^{2k} - \rho^{2k})^\alpha(R^{2k} - r^{2k})^{\alpha+1}} \right) - \frac{4\alpha^2 k^2 x^2 r^{4k-4}}{(r^{2k} - \rho^{2k})^{\alpha+1}(R^{2k} - r^{2k})^\alpha}. \]

(28)

Using (26) and (27), we write (28) as

\[\nu_{xx} = -\frac{2k \alpha r^{2k-2} + 4k \alpha (k-1)x^2 r^{2k-4}}{(r^{2k} - \rho^{2k})} + \frac{2k \alpha r^{2k-2} + 4k \alpha (k-1)x^2 r^{2k-4}}{(R^{2k} - r^{2k})} + \frac{4\alpha^2 k^2 x^2 r^{4k-4}}{(r^{2k} - \rho^{2k})^2} + \frac{4\alpha^2 k^2 x^2 r^{4k-4}}{(R^{2k} - r^{2k})^2}. \]

Summing over all \(x \), we get, for \(N = 2 \)

\[\Delta \nu = \frac{4k^2 \alpha r^{2k-2} \rho^{2k}}{(r^{2k} - \rho^{2k})^2} + \frac{4k^2 \alpha r^{2k-2} R^{2k}}{(R^{2k} - r^{2k})^2}. \]

(29)

Using the fact that \(\rho < r < R \), we have

\[\Delta \nu \leq \frac{16k^2 \alpha r^{4k-2} R^{4k}}{(r^{2k} - \rho^{2k})^2(R^{2k} - r^{2k})^2}. \]

(30)

By (26) it reduces to

\[\Delta \nu \leq \frac{16k^2 \alpha r^{4k-2} R^{4k} e^{2\nu}}{A^{2/\alpha}}. \]

(31)

Making the change of variable \(w = \frac{2\nu}{\alpha} \), we obtain

\[\Delta w \leq \frac{32k^2 \alpha r^{4k-2} R^{4k} e^w}{A^{2/\alpha}}. \]

(32)
Now choose \(A = (32k^2R^{4k})^{\frac{a}{2}} \), then
\[
\Delta w \leq r^{4k-2} e^w,
\]
where
\[
w = 2\ln \left(\frac{4\sqrt{2}kR^{2k}}{(r^{2k} - \rho^{2k})(R^{2k} - r^{2k})} \right),
\]
which proves the Lemma 2.

Next, as a consequence of Lemma 2, Osserman’s Lemma and theorem B, in a manner similar to theorem 1, one can easily deduce the following result:

Theorem 2. If \(u(x_1, x_2) \) satisfies
\[
\Delta u \geq r^{4k-2} f(u), \quad k > 1
\]
where \(f \) is positive, monotone increasing, \(C^1 \) function satisfying
\[
f'(u) \int_u^\infty \frac{dt}{f(t)} \leq 1,
\]
then the function \(\nu \) defined by
\[
\int _\nu \frac{dt}{f(t)} = \frac{(r^{2k} - \rho^{2k})^2(R^{2k} - r^{2k})^2}{32k^2R^{4k}},
\]
is a radial bound for \(u \) in the punctured disc \(\rho B_R \).

We, now extend Lemma 2 and theorem 2 to \(N \)-dimensions. We prove

Lemma 3. We \(w = w(x_1, x_2, x_3, \ldots, x_N) \) be a \(C^2 \) function in \(\rho B_R \) such that
\[
w = 2\ln \left(\frac{R^{2k}\sqrt{4k(N + 6k - 2)}}{(r^{2k} - \rho^{2k})(R^{2k} - r^{2k})} \right), \quad N \geq 2
\]
where \(k \geq 1 \) is a constant, then
\[
\Delta w \leq r^{4k-2} e^w,
\]
On a class of nonlinear partial differential equations

Proof. We define the function \(\nu = \nu(x_1, x_2, x_3, \ldots, x_N) \) as in (26) and differentiate twice with respect to \(x \), then we get from (28) with the help of (26)

\[
\nu_{xx} + \nu_x^2 = - \frac{2k\alpha r^{2k-2} + 4\alpha(k-1)r^{2k-4}x^2}{(r^{2k} - \rho^{2k})} + \frac{4\alpha(\alpha+1)k^2 x^2 r^{4k-4}}{(r^{2k} - \rho^{2k})^2} + \frac{4\alpha^2 x^2 r^{4k-4}}{(r^{2k} - \rho^{2k})^2}.
\]

Hence,

\[
\nu_{xx} + \frac{\nu_x^2}{4} \leq - \frac{2k\alpha r^{2k-2} + 4\alpha(k-1)r^{2k-4}x^2}{(r^{2k} - \rho^{2k})} + \frac{4\alpha(\alpha+1)k^2 x^2 r^{4k-4}}{(r^{2k} - \rho^{2k})^2} + \frac{4\alpha^2 x^2 r^{4k-4}}{(r^{2k} - \rho^{2k})^2}.
\]

Summing over all \(x \) and using (27), we get

\[
\Delta \nu \leq \frac{2kN\alpha r^{2k-2}(-R^{2k} + 2r^{2k} - \rho^{2k}) + 4\alpha(k-1)r^{2k-2}(-R^{2k} + 2r^{2k} - \rho^{2k}) - 6k^2 \alpha^2 r^{4k-2}}{(r^{2k} - \rho^{2k})^2(R^{2k} - r^{2k})} + \frac{3\alpha^2 + 4\alpha)k^2 r^{4k-2}(R^{2k} - 2R^{2k} - 2r^{2k} - \rho^{2k})}{(r^{2k} - \rho^{2k})^2(R^{2k} - r^{2k})^2}.
\]

In view of the fact \(\rho < r < R \), it reduces to

\[
\Delta \nu \leq \frac{2k\alpha(N + 2(k - 1) - 3k\alpha)r^{4k-2}}{(r^{2k} - \rho^{2k})(R^{2k} - r^{2k})} + \frac{\alpha(3\alpha + 4)2k^2 R^{4k} r^{4k-2}}{(r^{2k} - \rho^{2k})^2(R^{2k} - r^{2k})^2}. \tag{40}
\]

Now choose \(\alpha = \frac{N + 2k - 2}{3k} \), then

\[
\Delta \nu \leq \frac{2(N + 2k - 2)(N + 6k - 2)R^{4k} r^{4k-2}}{3(r^{2k} - \rho^{2k})^2(R^{2k} - r^{2k})^2}. \tag{41}
\]

By (26) it reduces to

\[
\Delta \nu \leq \frac{2}{3}(N + 2k - 2)(N + 6k - 2)R^{4k} r^{4k-2} \frac{e^{2\nu}}{A^{2/\alpha}}. \tag{42}
\]

By change of variable \(\omega = \frac{2\nu}{\alpha} \), we obtain

\[
\Delta \omega \leq 4k(N + 6k - 2)R^{4k} r^{4k-2} \frac{e^{\omega}}{A^{2/\alpha}}. \tag{43}
\]
Next, let $A = [R^{4k}4k(N + 6k - 2)]^{\frac{N+2k-2}{6k}}$, then

$$\Delta \omega \leq r^{4k-2}e^\omega,$$

where

$$\omega = 2\ln \left(\frac{\sqrt{4k(N + 6k - 2)}R^{2k}}{(r^{2k} - \rho^{2k})(R^{2k} - r^{2k})} \right).$$

This completes the proof of Lemma 3.

In a manner similar to the proof of theorem 2, by (37), theorem B and Osserman’s Lemma, one could derive the following result:

Theorem 3. If the function $u = u(x_1, x_2, x_3, \ldots, x_N)$ satisfies

$$\Delta u \geq r^{4k-2}f(u), \quad k \geq 1$$

where f is positive, monotone increasing, C^1 function satisfying

$$f'(u) \int_u^\infty \frac{dt}{f(t)} \leq 1,$$

then the function ν defined by

$$\int_\nu^\infty \frac{dt}{f(t)} = \frac{(r^{2k} - \rho^{2k})^2(R^{2k} - r^{2k})^2}{4kR^{4k}(N + 6k - 2)}, \quad (N \geq 2)$$

is such that $u \leq \nu$ at each point of ρB_R.

Remark: For $N = 2$, (46) does not include (35).

3 Dirichlet type Problems

Consider the nonlinear Dirichlet type problem

$$\Delta^n u = (-1)^m P(r)e^{au} \quad \text{in } B_R(0),$$

$$u = 0 \quad \text{on } \partial B_R(0),$$

where $B_R(0) \subset \mathbb{R}^N$ is a open ball of radius R centered at 0, $a > 0$ is a constant, the function $P(r) > 0$ is such that

...
\[\Delta^m (\ell n P(r)) = 0 \quad (49) \]

and \(\Delta^m \) is the \(m \)th iterate of \(N \)-dimensional Laplace operator \(\Delta \).

First, we write the Equation (47) as

\[\Delta^m u = (-1)^m e^{au + \ell n P(r)}, \]

and let

\[au + \ell n P(r) = \nu, \quad (50) \]

then, in view of (49), the problem (47), (48) reduces to

\[\Delta^m \nu = (-1)^m a e^{\nu} \quad \text{in} \ B_R(0), \quad (51) \]

and

\[\nu = \ell n P(r) \quad \text{on} \ \partial B_R(0). \quad (52) \]

Now by theorem 4 [8] the solution of (51) is given by

\[\nu = m \ell n \left[\left(\frac{(2m)!}{a} \right)^{\frac{1}{m}} \frac{4R^2}{(R^2 + r^2)^2} \right]. \]

Hence, by (50)

\[u = \frac{m}{a} \ell n \left[\left(\frac{(2m)!}{aP(r)} \right)^{\frac{1}{m}} \frac{4R^2}{(R^2 + r^2)^2} \right]. \]

It can be checked or verified that the solution \(u \) of (47) can be written

\[u = \frac{m}{a} \ell n \frac{b}{[P(r)]^{\frac{1}{m}}} \left(\frac{1 + \left(\frac{a}{2m} \right)^{\frac{1}{m}} \frac{br^2}{4} \right)^2, \quad (53) \]

where \(b \) is a constant. Thus

\[e^{au} = \frac{b}{(P(r))^{\frac{1}{m}}} \left(1 + \left(\frac{a}{2m} \right)^{\frac{1}{m}} \frac{br^2}{4} \right)^2. \quad (54) \]
Since \(u = 0 \) when \(r = R \), we conclude that the constant \(b \) is a root of
\[
\left(\frac{a}{(2m)!} \right)^\frac{2}{m} \frac{R^4}{16} b^2 + \left(\frac{a}{(2m)!} \right)^\frac{1}{m} \frac{R^2}{2} - \frac{1}{(P(R))^{\frac{1}{m}}} \right) b + 1 = 0,
\]
amely,
\[
b = \frac{8((2m)!)^\frac{2}{m}}{a^{2/m}R^4} \left\{ \left(\frac{1}{(P(R))^{\frac{1}{m}}} - \left(\frac{a}{(2m)!} \right)^\frac{1}{m} \frac{R^2}{2} \right) \pm \sqrt{\frac{1}{(P(R))^{\frac{1}{m}}} - \left(\frac{a}{(2m)!P(R)} \right)^{\frac{1}{m}} R^2} \right\}.
\]
Hence, the problem \((47), (48)\) has

(1) No solution if \(R^2(P(R))^{\frac{1}{m}} > (\frac{(2m)!}{a})^{\frac{1}{m}} \)

(2) One solution if \(R^2(P(R))^{\frac{1}{m}} = (\frac{(2m)!}{a})^{\frac{1}{m}} \)

(3) Two solutions if \(R^2(P(R))^{\frac{1}{m}} < (\frac{(2m)!}{a})^{\frac{1}{m}} \).

In particular, if \(m = 1 \), then the problem
\[
\Delta u + P(r)e^{au} = 0 \quad \text{in } B_R(0), \quad u = 0 \quad \text{on } \partial B_R(0),
\]
has

(1) No solution if \(R^2P(R) > \frac{2}{a} \)

(2) One solution if \(R^2P(R) = \frac{2}{a} \)

(3) Two solutions if \(R^2P(R) < \frac{2}{a} \)

\[\square\]

Remark: If \(P(R) = K \) (Const.) and \(a = 1 \), then the corresponding result in [8] is a special case of this result.

In Case \(m = 2 \), the Dirichlet type problem for biharmonic functions
\[
\Delta^2 u = P(r)e^{au} \quad \text{in } B_R(0)
\]
\[
u = 0 \quad \text{on } \partial B_R(0)
\]
has
(1) No solution if \(R^2(P(R))^{\frac{1}{2}} > \left(\frac{4}{a}\right)^{\frac{1}{2}} \)

(2) one solution if \(R^2(P(R))^{\frac{1}{2}} = \left(\frac{4}{a}\right)^{\frac{1}{2}} \)

(3) Two solutions if \(R^2(P(R))^{\frac{1}{2}} < \left(\frac{4}{a}\right)^{\frac{1}{2}} \).

Next, we consider the problem

\[
\Delta^k u = (-1)^k bu^{\frac{N+2k}{2}} & \text{ in } B_R(0) \\
u = \phi(R) & \text{ on } \partial B_R(0)
\]

where \(b > 0 \) is a constant and \(N > 2k \).

It is well-known [1] that the solution of (59) is given by

\[
u = \left(\frac{R^k \sqrt{(N-2k)(N-2(k-1)) \cdots (N-2)(N+2)\cdots (N+2(k-1))}}{b(R^2 + r^2)^{k/2}}\right)^{\frac{N-2k}{4}},
\]

which can be written as

\[
u = \left(\frac{(N-2k) \cdots (N+2(k-1))}{b}\right)^{\frac{1}{k}} \frac{1}{R^2(1 + \frac{r^2}{R^2})^2} \cdot \frac{N-2k}{4}.
\]

Further, for a constant \(d \), it can be checked that

\[
u = \left(\frac{d}{1 + \frac{r^2 db^{\frac{1}{k}}}{\{(N-2k) \cdots (N+2(k-1))\}^{\frac{1}{k}}}}\right)^{\frac{N-2k}{4}}.
\]

Using the boundary condition \(u = \phi(R) \) when \(r = R \), we find that \(d \) is a root of

\[
\left(1 + \frac{R^2 db^{\frac{1}{k}}}{\{(N-2k) \cdots (N+2(k-1))\}^{\frac{1}{k}}}\right)^2 = \frac{d}{\phi(R)}^{\frac{N-2k}{4}},
\]

or,

\[
R^4 b^{\frac{2k}{N-2k}} d^2 \left\{\frac{2R^2 b^{\frac{1}{k}}}{\{(N-2k) \cdots (N+2(k-1))\}^{\frac{1}{k}}} - \frac{1}{\phi R^{\frac{N-2k}{4}}(R)}\right\} d + 1 = 0.
\]
Thus,

\[
d = \frac{1}{2R^4} \left\{ \left(\frac{(N - 2k)\cdots(N + 2(k - 1))}{b} \right)^{\frac{2}{k}} \right\} \left[\frac{1}{\phi(R)^{\frac{2}{N-2k}}} - \frac{2R^2b^{\frac{k}{2}}}{\{(N - 2k)\cdots(N + 2(k - 1))\}^{\frac{k}{2}}} \right] \pm \sqrt{\left(\frac{1}{\phi(R)^{\frac{2}{N-2k}}} - \frac{4R^2b^{\frac{k}{2}}}{\{(N - 2k)\cdots(N + 2(k - 1))\}} \right)^{\frac{k}{4}} \frac{4}{b} \phi^{\frac{4}{N-2k}}(R)} \right) \right]^{\frac{1}{k}}
\]

Hence, the problem (59), (60) has

(i) No solution if \(R^2\phi^{\frac{4}{N-2k}}(R) > \left\{ \left(\frac{(N - 2k)\cdots(N + 2(k - 1))}{b}\right)^{\frac{1}{k}} \right\} \)

(ii) one solution if \(R^2\phi^{\frac{4}{N-2k}}(R) = \left\{ \left(\frac{(N - 2k)\cdots(N + 2(k - 1))}{b}\right)^{\frac{1}{k}} \right\} \)

(iii) Two solutions if \(R^2\phi^{\frac{4}{N-2k}}(R) < \left\{ \left(\frac{(N - 2k)\cdots(N + 2(k - 1))}{b}\right)^{\frac{1}{k}} \right\} \)

In particular, if \(k = 1 \), then the problem

\[
\Delta u + bu^{\frac{N+2}{2}} = 0 \quad \text{in } B_R(0), \quad N \geq 3
\]

\[
u(R) = \phi(R) \quad \text{on } \partial B_R(0),
\]

has

(i) No solution if \(R^2\phi^{\frac{4}{N-2}}(R) > \frac{N(N-2)}{4b} \),

(ii) one solution if \(R^2\phi^{\frac{4}{N-2}}(R) = \frac{N(N-2)}{4b} \),

(iii) Two solutions if \(R^2\phi^{\frac{4}{N-2}}(R) < \frac{N(N-2)}{4b} \).

In case \(k = 2 \), then the problem

\[
\Delta^2 u = bu^{\frac{N+4}{4}} \quad \text{in } B_R(0), \quad N \geq 5
\]

\[
u = \phi(R) \quad \text{on } \partial B_R(0)
\]

has
On a class of nonlinear partial differential equations

(i) No solution if \(R^2 \phi^{N-4} (R) > \frac{\sqrt{(N-4)(N-2)N(N+2)}}{4\sqrt{b}} \),

(ii) one solution if \(R^2 \phi^{N-4} (R) = \frac{\sqrt{(N-4)(N-2)N(N+2)}}{4\sqrt{b}} \),

(iii) Two solutions if \(R^2 \phi^{N-4} (R) < \frac{\sqrt{(N-4)(N-2)N(N+2)}}{4b} \).

References

Received: March 30, 2013