Exact Defensive Alliances in Graphs

Walter Carballosa

Departamento de Matemáticas, Universidad Carlos III de Madrid
Avenida de la Universidad 30, 28911 Leganés, Madrid, Spain
waltercarb@gmail.com

Copyright © 2013 Walter Carballosa. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Abstract

A nonempty set $S \subseteq V$ is a defensive k-alliance in $G = (V, E)$, $k \in [-\Delta, \Delta] \cup \mathbb{Z}$, if for every $v \in S$, $d_S(v) \geq d_S^+(v) + k$. A defensive k-alliance S is called exact, if S is defensive k-alliance but is no defensive $(k+1)$-alliance in G. In this paper we study the mathematical properties of exact defensive k-alliances in graphs. In particular, we obtain several bounds for defensive k-alliance of a graph. Furthermore, we characterize the exact defensive alliances in graph join $G_1 \uplus G_2$ in terms of G_1, G_2.

Mathematics Subject Classification: 05C69; 05A20; 05C50

Keywords: Finite Graph, Defensive Alliance, Exact Defensive Alliance, Graph Join

1 Exact Defensive Alliance

The study of mathematical properties of alliances in graphs was first introduced by P. Kristiansen, S. M. Hedetniemi and S. T. Hedetniemi [2]. They proposed different types of alliances namely defensive alliances [4, 6, 7], offensive alliances [1, 5] and dual alliances or powerful alliances [3]. This paper study mathematical properties of exact defensive alliances.

We begin by stating the used terminology. Throughout this article, $G = (V, E)$ denotes a simple graph of order $|V| = n$ and size $|E| = m$. We denote two adjacent vertices u and v by $u \sim v$. For a nonempty set $X \subseteq V$, and a vertex $v \in V$, $N_X(v)$ denotes the set of neighbors v has in X, i.e., $N_X(v) :=$
\{u \in X : u \sim v\}; and the degree of \(v\) in \(X\) will be denoted by \(\delta_X(v) = |N_X(v)|\). We denote the degree of a vertex \(v_1 \in V\) by \(\delta(v_1)\) (or by \(\delta_1\) for short) and the minimum degree of \(G\) will be denoted by \(\delta\) and the maximum degree by \(\Delta\). The subgraph induced by \(S \subseteq V\) will be denoted by \(\langle S \rangle\) and the complement of the set \(S\) in \(V\) will be denoted by \(\overline{S}\).

A nonempty set \(S \subseteq V\) is a defensive \(k\)-alliance in \(\Gamma = (V,E)\), \(k \in [-\delta_1,\delta_1] \cap \mathbb{Z}\), if for every \(v \in S\),

\[
\delta_S(v) \geq \delta_{\overline{S}}(v) + k. \tag{1}
\]

A vertex \(v \in S\) is said to be \(k\)-satisfied by the set \(S\), if (1) holds. Notice that (1) is equivalent to

\[
\delta(v) \geq 2\delta_{\overline{S}}(v) + k \quad \text{and} \quad 2\delta_S(v) \geq \delta(v) + k. \tag{2}
\]

We denote \(K := [-\delta_1,\delta_1] \cap \mathbb{Z}\). In some graph \(\Gamma\), there are some values of \(k \in K\), such that do not exist defensive \(k\)-alliances in \(\Gamma\). For instance, for \(k \geq 2\) in star graph \(S_n\), do no exist defensive \(k\)-alliances; besides, \(V(\Gamma)\) is a defensive \(\delta_n\)-alliance in \(\Gamma\). Notice that for any \(S\) there exists some \(k \in K\) such that it is a defensive \(k\)-alliance in \(\Gamma\).

We denote by

\[
k_S := \max\{k \in K : S \text{ is a defensive } k\text{-alliance}\}. \tag{3}
\]

We say that \(k_S\) is the exact index of alliance of \(S\), or also, \(S\) is an exact defensive \(k_S\)-alliance in \(\Gamma\).

Proposition 1.1. Let \(\Gamma\) be a graph and let \(S \subseteq V\). The following statements are equivalent

1. \(k\) is the exact exact of alliance of \(S\).

2. \(S\) is a defensive \(k\)-alliance in \(\Gamma\) with one vertex \(v \in S\) such that \(\delta_S(v) = \delta_{\overline{S}}(v) + k\).

3. \(S\) is a defensive \(k\)-alliance but is not defensive \((k+1)\)-alliance in \(\Gamma\).

Proof. (1) \(\implies\) (2) Seeking for a contradiction assume that for all \(v \in S\) we have \(\delta_S(v) > \delta_{\overline{S}}(v) + k\), then we obtain \(\delta_S(v) \geq \delta_{\overline{S}}(v) + (k+1)\). This is the contradiction we were looking for, since \(k\) is a maximum; so, there is \(v \in S\) such that \(\delta_S(v) = \delta_{\overline{S}}(v) + k\).

(2) \(\implies\) (3) Since \(\exists v \in S : \delta_S(v) = \delta_{\overline{S}}(v) + k\), we have that \(S\) is not a defensive \((k+1)\)-alliance in \(\Gamma\).

(3) \(\implies\) (1) It is easily seen that \(k = k_S\).
Remark 1.2. The exact index of alliance of S in Γ is $k_S = \min_{v \in S} \{\delta_S(v) - \delta_{\overline{S}}(v)\}$.

Proposition 1.3. Let Γ be a graph with any vertex has odd (respectively, even) degree, then Γ don’t have exact defensive k-alliance when k is even (respectively, odd).

Proof. Consider $S \subset V$ an exact defensive k-alliance. By Proposition 1.1, we have $\exists v \in S$ such that $2\delta_S(v) = \delta_{\Gamma}(v) + k$. This finish the proof since $\delta_{\Gamma}(v) + k$ is even. \hfill \square

Lemma 1.4. Let G be a graph and let $S \subset V(G)$. If S is an exact defensive k-alliance in G, then it is a defensive r-alliance in G for all $r = -\Delta_G, \ldots, k$.

Proof. Since S is an exact defensive k-alliance in G, we have $\delta_S(v) \geq \delta_{\overline{S}}(v) + k$ for all $v \in S$ and $\delta_S(w) = \delta_{\overline{S}}(w) + k$ for some $w \in S$. Hence, obviously we have $\delta_S(v) \geq \delta_{\overline{S}}(v) + k \geq \delta_{\overline{S}}(v) + r$ for every $v \in S$ with $r \leq k$ (i.e., $r = -\Delta_G, \ldots, k$). \hfill \square

The following results should be useful in order to obtain defensive alliance $S \subset V$ in Γ with exact index of alliance k.

Proposition 1.5. Let Γ be a graph and let $S \subset V$ be a defensive k-alliance in Γ. Then

$$|S| \geq k + 1. \quad (4)$$

Theorem 1.6. Let Γ be a graph and let $S \subset V$ be an exact defensive k-alliance in Γ. Then

$$\left\lceil \frac{\delta_n + k + 2}{2} \right\rceil \leq |S| \leq \left\lfloor \frac{2n - \delta_n + k}{2} \right\rfloor. \quad (5)$$

Proof. On the one hand, since $|S| - 1 \geq \delta_S(v)$ and $\delta_\Gamma(v) \geq \delta_n$ for all $v \in S$, we have

$$2(|S| - 1) \geq 2\delta_S(v) \geq \delta_\Gamma(v) + k \geq \delta_n + k, \quad \forall v \in S,$$

hence, we deduce the first inequality.

On the other hand, from (2) we have $\delta_\Gamma(v) - k \geq 2\delta_{\overline{S}}(v)$ for all $v \in S$ and the equality holds for some $w \in S$, i.e., $\delta_\Gamma(w) - k = 2\delta_{\overline{S}}(w)$. Then, since $\delta_n \leq \delta_\Gamma(w)$ and $\delta_{\overline{S}}(w) = |N_V(w) \setminus S| \leq |V \setminus S| = n - |S|$, we obtain $\delta_n - k \leq 2(n - |S|)$. \hfill \square
2 Exact defensive alliances in graph join.

The graph join $G_1 \sqcup G_2$ of two graphs is their graph union with all the edges that connect the vertices of the first graph G_1 with the vertices of the second graph G_2. It is a commutative operation.

Proposition 2.1. Let G_1, G_2 be two graphs with orders n_1 and n_2 respectively. Consider $G = G_1 \sqcup G_2$ and $S \subset V(G_1)$. Then we have the following statements

a) S is an exact defensive k-alliance in G if and only if this is an exact defensive $(n_2 + k)$-alliance in G_1.

b) If G_1 is Δ_{G_1}-regular, then S is a defensive k-alliance in G if and only if

$$\delta_S \geq \frac{\Delta_{G_1} + n_2 + k}{2}.$$

c) If $\delta_{G_1} \geq n_2 + k$, then $V(G_1)$ is a defensive k-alliance in G.

d) If $\Delta_{G_1} < n_2 + k$, then there not exists defensive k-alliance S in G.

e) If S is an exact defensive k-alliance in G, then

$$|S| \geq \delta_{G_1} + n_2 + k + 1.$$

Proof. a) In the one hand, if S is an exact defensive k-alliance in G, then we have $\delta_S(v) \geq \delta_{\overline{G}}(v) + k$ for all $v \in S$ and the equality is hold at some $w \in S$. Hence, since $\delta_{\overline{G}}(v) = \delta_{\overline{G}_{G_1}}(v) + n_2$ for all $v \in S$, we have that S is an exact defensive $(n_2 + k)$-alliance in G_1. In the other hand, if $n_2 + k$ is the exact index of alliance of S in G_1, then we have that k is the exact index of alliance of S in G, since $\delta_{\overline{G}}(v) = \delta_{\overline{G}_{G_1}}(v) + n_2$ for all $v \in S$.

b) If S is a defensive k-alliance in G, then we have

$$\delta_S(v) \geq \delta_{\overline{G}}(v) + k = \Delta_{G_1} - \delta_S(v) + n_2 + k \quad \forall v \in S,$$

i.e., $2\delta_S(v) \geq \Delta_{G_1} + n_2 + k$ for all $v \in S$. Besides, if $\delta_S \geq (\Delta_{G_1} + n_2 + k)/2$, then we have $2\delta_S(v) \geq 2\delta_S \geq \Delta_{G_1} + n_2 + k = \delta_G(v) + k$ for all $v \in S$. Then, S is a defensive k-alliance in G.

c) We have $\delta_{\overline{G}_{G_1}}(v) = n_2$ for all $v \in V(G_1)$. Then, since $\delta_{G_1} \geq n_2 + k$, we have $\delta_{G_1}(v) \geq \delta_{G_1} \geq n_2 + k = \delta_{\overline{G}_{G_1}}(v) + k$ for all $v \in V(G_1)$.

d) Seeking for a contradiction assume that S is a defensive k-alliance in G, then we have $\delta_S(v) \geq \delta_{S_G}(v) + k \geq n_2 + k$ for all $v \in S$. Therefore, we have

$$\Delta_{G_1} \geq \delta_{S}(v) \geq \delta_{S_G}(v) + k \geq n_2 + k > \Delta_{G_1}, \quad \forall v \in S.$$

In fact, it is a contradiction we were looking for.

e) We have that $2\delta_{S}(v) \geq \delta_{G}(v) + k \geq \delta_{G_1}(v) + n_2 + k$ for all $v \in S$. So, since $\delta_{G_1} \leq \delta_{G_1}(v)$ and $\delta_S(v) \leq |S| - 1$ for all $v \in S$ we have $|S| - 1 \geq \delta_{G_1} + n_2 + k$.

Corollary 2.2. If $S \subset V(G_1)$ is a defensive 0-alliance in $G_1 \uplus G_2$, then $|V(G_2)| \leq \Delta_{G_1}$.

Theorem 2.3. Let G_1, G_2 be two graphs with order n_1 and n_2, respectively. Consider $S = S_1 \cup S_2$ such that $\emptyset \neq S_1 \subset V(G_1)$ and $\emptyset \neq S_2 \subset V(G_2)$. Denote by k_i the exact index of alliance of S_i in G_i for $i = 1, 2$. Then S is an exact defensive k-alliance in $G_1 \uplus G_2$ with $k = \min\{k_1 - n_2 + 2|S_2|, k_2 - n_1 + 2|S_1|\}$.

Furthermore, if S is a defensive t-alliance in $G_1 \uplus G_2$, then $|S| \geq t + [(n_1 + n_2 - k_1 - k_2)/2]$.

Proof. In the one hand, for every $v \in S_1$ we have

$$\delta_{S_1}(v) \geq \delta_{S_1}(v) + k_1, \quad \delta_{S_1}(v) + |S_2| \geq \delta_{S_1}(v) + k_1 + |S_2|$$

and $\delta_{S}(v) \geq \delta_{S}(v) + k_1 + 2|S_2| - n_2$.

Furthermore, for every $w \in S_2$ we have

$$\delta_{S_2}(w) \geq \delta_{S_2}(w) + k_2, \quad \delta_{S_2}(w) + |S_1| \geq \delta_{S_2}(w) + k_2 + |S_1|$$

and $\delta_{S}(w) \geq \delta_{S}(w) + k_2 + 2|S_1| - n_1$.

Since, k_1 and k_2 are exact indices of defensive alliances, then k is the exact index of defensive alliance of S in G.

In the other hand, Lemma 1.4 gives $k_S^{b(G_1 \uplus G_2)} \geq t$. Hence, we have

$$k_1 - n_2 + 2|S_2| \geq t, \quad k_2 - n_1 + 2|S_1| \geq t \quad \Rightarrow \quad |S| \geq t + (n_1 + n_2 - k_1 - k_2)/2.$$
Proof. We have $\delta_S(v) \geq \delta_S^-(v) + k$ for all $v \in S$, and the equality holds for some $w \in S$. Then, since $S_1 \subset S$ and $\delta_S(v) = \delta_{S_1}(v) + |S_2|$ for every $v \in S_1$, we have

$$\delta_S(v) \geq \delta_S^-(v) + k \iff \delta_{S_1}(v) \geq \delta_{S_1}^-(v) + n_2 - 2|S_2| + k, \quad \forall v \in S_1$$

By symmetry we have the same result by S_2.

Besides, $w \in S_1$ or $w \in S_2$ (without loss of generality we can assume that $w \in S_1$); thus, it is a simple matter to S_1 is an exact defensive $(k + n_2 - 2|S_2|)$-alliance in G_1. \hfill \square

Corollary 2.5. Let G_1, G_2 be two graphs. Let $S \subset V(G_1 \uplus G_2)$ such that $\emptyset \neq S_1 := S \cap V(G_1)$ and $\emptyset \neq S_2 := S \cap V(G_2)$. If S is an exact defensive k-alliance in $G_1 \uplus G_2$, then

$$|S_1| \leq \frac{k + \Delta_G}{2} \quad \text{or} \quad |S_2| \leq \frac{k + \Delta_G}{2}.$$

Proof. By Theorem 2.4 we have that at least one of S_1, S_2 is an exact defensive alliance, hence, $k + n_2 - 2|S_2| \geq -\Delta_{G_1}$ or $k + n_1 - 2|S_1| \geq -\Delta_{G_2}$. Without loss of generality we can assume that it is S_1. Therefore, since $\Delta_G = \max\{n_2 + \Delta_{G_1}, n_1 + \Delta_{G_2}\}$ we obtain $2|S_1| \leq k + n_2 + \Delta_{G_1} \leq k + \Delta_G$. \hfill \square

Theorem 2.6. Let G_1, G_2 be two graphs with order n_1 and n_2, respectively. Let $S \subset V(G_1 \uplus G_2)$ such that $\emptyset \neq S_1 := S \cap V(G_1)$, $\emptyset \neq S_2 := S \cap V(G_2)$. If S is a defensive k-alliance in $G_1 \uplus G_2$, then

$$|S| \geq \frac{k + \sqrt{k^2 + 4n}}{2}. \quad (6)$$

Proof. We have $\delta_S(v) \geq \delta_S^-(v) + k$ for all $v \in S$, therefore, doing the summation over $v \in S$ we obtain

$$\sum_{v \in S} \delta_S(v) \geq \sum_{v \in S} \delta_S^-(v) + |S| \cdot k.$$

Let m_S be the number of edges of $\langle S \rangle$. So, we have

$$\sum_{v \in S} \delta_S(v) = 2m_S \leq 2 \left(\frac{|S|}{2} \right).$$

Besides, we have domination of S, since $\emptyset \neq S_1$ and $\emptyset \neq S_2$ (i.e., $N_{G_1 \uplus G_2}(S) = V(G_1 \uplus G_2)$). Therefore, we obtain

$$|S|^2 - |S| \geq n_1 - |S_1| + n_2 - |S_2| + |S| \cdot k, \quad \iff \quad |S|^2 - k|S| - n \geq 0.$$

Finally, positivity of $|S|$ allow to obtain the result. \hfill \square
References

Received: May 3, 2013