On Fuzzy Soft Γ-Hyperideals over Left Almost Γ-Semihypergroups

*Moin A. Ansari and Ibtisam A. H. Masmali

Department of Mathematics
Faculty of Science
Jazan University, Jazan
Kingdom of Saudi Arabia
*moinakhtar83@gmail.com

Copyright © 2013 Moin A. Ansari and Ibtisam A. H. Masmali. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Abstract

In this paper we have introduced the notion of fuzzy soft Γ-hyperideals in left almost Γ-semihypergroups. Also we have studied some properties based on them with t-level set, union and intersection.

Mathematics Subject Classification: 20N20, 20N25, 08A72

Keywords: LA-Γ-semihypergroups; Fuzzy soft sets; Fuzzy soft Γ-hyperideals

1 Introduction

Hyperstructure theory was born in 1934 when Marty [12], defined hypergroups, began to analyze their properties and applied them to groups, rational algebraic functions. In 1986, Sen and Saha [15], introduced the concept of the Γ-semigroup as a generalization of semigroup and ternary semigroup. Many classical notions and results of the theory of semigroups have been extended and generalized to Γ-semigroups. Davvaz et al. [2, 8], introduced the notion of Γ-semihypergroup. Recently, Yaqoob and Aslam [18], introduced the notion of LA-Γ-semihypergroup as a generalization of semigroup, commutative semihypergroup and of commutative Γ-semigroup. They proved some results in this
respect and presented some examples of LA-Γ-semihypergroups. Yaqoob et al. [19, 20], applied rough set theory and soft set theory to LA-Γ-semihypergroups, also see [3, 4, 21, 22, 23].

In 1965, Zadeh [24], introduced the notion of a fuzzy subset of a non-empty set \(X \), as a function from \(X \) to \([0, 1]\). Recently, fuzzy set theory has been well developed in the context of hyperalgebraic structure theory. A recent book [6], contains a wealth of applications. Recently in [7], Davvaz and Leoreanu-Fotea studied the structure of fuzzy Γ-hyperideals in Γ-semihypergroups.

The concept of soft set was given by Molodtsov [13] in 1999, which is a completely new approach for modeling and uncertainty. After Molodtsov’s work, some different applications of soft sets were studied in [5] and [10]. Also Maji et al. [11], presented the definition of fuzzy soft set. Some corrections were given by Ali et al. [1]. Roy et al. [14], presented some applications of this notion to decision making problems. Many authors studied the properties of fuzzy soft sets in different algebraic structures, for instance, Jun et al. [9], Williams and Saeid [16] and Yang [17].

In this paper, some properties of fuzzy soft Γ-hyperideals in left almost Γ-semihypergroups have been discussed.

2 Left Almost Γ-semihypergroups

In this section, we recall certain definitions and results needed for our purpose. Let \(S \) be a non-empty set and \(\mathcal{P}^*(S) \) be the set of all non-empty subsets of \(S \). The map \(\circ : S \times S \rightarrow \mathcal{P}^*(S) \) is called hyperoperation or join operation on the set \(S \). A couple \((S, \circ) \) is called a hypergroupoid. If \(A \) and \(B \) be two non-empty subsets of \(S \), then we denote

\[
A \circ B = \bigcup_{a \in A, b \in B} a \circ b, \quad a \circ A = \{a\} \circ A \quad \text{and} \quad a \circ B = \{a\} \circ B.
\]

Definition 2.1. [18] Let \(S \) and \(\Gamma \) be two non-empty sets. \(S \) is called a left almost \(\Gamma \)-semihypergroup (abbreviated as an LA-Γ-semihypergroup) if every \(\gamma \in \Gamma \) is a hyperoperation on \(S \), i.e., \(x\gamma y \subseteq S \) for every \(x, y \in S \), and for every \(\gamma, \beta \in \Gamma \) and \(x, y, z \in S \) we have \((x\gamma y)\beta z = (z\gamma y)\beta x \).

The law \((x\gamma y)\beta z = (z\gamma y)\beta x \) is called left invertive law. Let \(A \) and \(B \) be two non-empty subsets of an LA-Γ-semihypergroup \(S \). Then we define

\[
A\gamma B = \bigcup \{a\gamma b \mid a \in A, \ b \in B \text{ and } \gamma \in \Gamma\},
\]

also

\[
A\Gamma B = \bigcup_{\gamma \in \Gamma} A\gamma B = \bigcup \{a\gamma b \mid a \in A, \ b \in B \text{ and } \gamma \in \Gamma\}.
\]
Example 2.2. Let $S = \{a, b, c, d\}$ and $\Gamma = \{\beta, \gamma\}$ be the sets of binary hyperoperations defined below:

<table>
<thead>
<tr>
<th>β</th>
<th>a</th>
<th>b</th>
<th>c</th>
<th>d</th>
</tr>
</thead>
<tbody>
<tr>
<td>a</td>
<td>${a, c}$</td>
<td>${a, b, c}$</td>
<td>${a, c}$</td>
<td>d</td>
</tr>
<tr>
<td>b</td>
<td>${a, b, c}$</td>
<td>${a, b}$</td>
<td>${b, c}$</td>
<td>d</td>
</tr>
<tr>
<td>c</td>
<td>${a, b, c}$</td>
<td>${a, b, c}$</td>
<td>${a, b, c}$</td>
<td>d</td>
</tr>
<tr>
<td>d</td>
<td>d</td>
<td>d</td>
<td>d</td>
<td>S</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>γ</th>
<th>a</th>
<th>b</th>
<th>c</th>
<th>d</th>
</tr>
</thead>
<tbody>
<tr>
<td>a</td>
<td>${a, b}$</td>
<td>${a, b}$</td>
<td>${a, b}$</td>
<td>d</td>
</tr>
<tr>
<td>b</td>
<td>${a, c}$</td>
<td>${a, c}$</td>
<td>${a, b, c}$</td>
<td>d</td>
</tr>
<tr>
<td>c</td>
<td>${b, c}$</td>
<td>c</td>
<td>${a, b, c}$</td>
<td>d</td>
</tr>
<tr>
<td>d</td>
<td>d</td>
<td>d</td>
<td>d</td>
<td>S</td>
</tr>
</tbody>
</table>

Clearly S is not a Γ-semihypergroup because $\{a, b, c\} = (a\beta b)\gamma b \neq a\beta (b\gamma b) = \{a, c\}$. Thus S is an LA-Γ-semihypergroup because S satisfies the left invertive law.

Every LA-Γ-semihypergroup satisfies the law $(a\alpha b)\beta (c\gamma d) = (a\alpha c)\beta (b\gamma d)$ for all $a, b, c, d \in S$ and $\alpha, \beta, \gamma \in \Gamma$. This law is known as Γ-hypermedial law. (cf. [18]).

Definition 2.3. [18] Let K be a non-empty subset of S. Then K is called a sub LA-Γ-semihypergroup of S if $a\gamma b \subseteq K$ for all $a, b \in K$ and $\gamma \in \Gamma$.

Definition 2.4. [18] A non-empty subset A of an LA-Γ-semihypergroup S is called a right (left) Γ-hyperideal of S if $A\Gamma S \subseteq A$ ($S\Gamma A \subseteq A$), and is a Γ-hyperideal of S if it is both a right and a left Γ-hyperideal.

3 Fuzzy Soft Sets

Molodtsov defined the notion of a soft set as follows. Let U be an initial universe and E be the set of parameters. Usually, parameters are attributes, characteristics or properties of an object. Let $P(U)$ denote the power set of U and A is a subset of E.

Definition 3.1. [13] A pair (F, A) is called a soft set over U, where F is a mapping given by $F : A \rightarrow P(U)$. In other words a soft set over U is a parametrized family of subsets of U.

Definition 3.2. [11] A pair (\hat{F}, A) is called a fuzzy soft set over U, where $\hat{F} : A \rightarrow \wp(U)$ is a mapping and $\wp(U)$ being the set of all fuzzy subsets of S.

Definition 3.3. Let (\hat{F}, A) and $(\hat{\Theta}, B)$ be two fuzzy soft sets over a common universe U, we say (\hat{F}, A) is a fuzzy soft subset of $(\hat{\Theta}, B)$, if (i) $A \subseteq B$, (ii) for all $\delta \in A$, \hat{F}_δ is a fuzzy subset of $\hat{\Theta}_\delta$ and we denote it by $(\hat{F}, A) \subseteq (\hat{\Theta}, B)$.

Definition 3.4. Let (\hat{F}, A) and $(\hat{\Theta}, B)$ be two fuzzy soft sets over a common universe U. Then $(\hat{F}, A) \hat{\wedge} (\hat{\Theta}, B)$ is defined by $(\hat{F}, A) \hat{\wedge} (\hat{\Theta}, B) = (\hat{\Xi}, A \times B)$, where $\hat{\Xi}_{(\delta, \varepsilon)} = \hat{F}_\delta \cap \hat{\Theta}_\varepsilon$ for all $(\delta, \varepsilon) \in A \times B$.

Definition 3.5. Let (\mathcal{F}, A) and $(\tilde{\Theta}, B)$ be two fuzzy soft sets over a common universe U. Then $(\mathcal{F}, A)\sqcup(\tilde{\Theta}, B)$ is defined by $(\mathcal{F}, A)\sqcup(\tilde{\Theta}, B) = (\tilde{\Xi}, A \times B)$, where $\tilde{\Xi}(\delta, \varepsilon) = \mathcal{F}_\delta \cup \tilde{\Theta}_\delta$ for all $(\delta, \varepsilon) \in A \times B$.

Definition 3.6. Let (\mathcal{F}, A) and $(\tilde{\Theta}, B)$ be two fuzzy soft sets over a common universe U. Then,

(i) the union $(\tilde{\Xi}, C)$ of two soft sets (\mathcal{F}, A) and $(\tilde{\Theta}, B)$ is defined as the soft set $(\tilde{\Xi}, C) = (\mathcal{F}, A)\sqcup(\tilde{\Theta}, B)$, where $C = A \cup B$ and for all $\delta \in C$

\[
\tilde{\Xi}_\delta = \begin{cases}
\mathcal{F}_\delta & \text{if } \delta \in A \setminus B \\
\tilde{\Theta}_\delta & \text{if } \delta \in B \setminus A \\
\max \{\mathcal{F}_\delta, \tilde{\Theta}_\delta\} & \text{if } \delta \in A \cap B
\end{cases}
\]

(ii) the intersection $(\tilde{\Xi}, C)$ of two soft sets (\mathcal{F}, A) and $(\tilde{\Theta}, B)$ is defined as the soft set $(\tilde{\Xi}, C) = (\mathcal{F}, A)\cap(\tilde{\Theta}, B)$, where $C = A \cup B$ and for all $\delta \in C$

\[
\tilde{\Xi}_\delta = \begin{cases}
\mathcal{F}_\delta & \text{if } \delta \in A \setminus B \\
\tilde{\Theta}_\delta & \text{if } \delta \in B \setminus A \\
\min \{\mathcal{F}_\delta, \tilde{\Theta}_\delta\} & \text{if } \delta \in A \cap B
\end{cases}
\]

In contrast with the above definitions of fuzzy soft set union and intersection, we may sometimes adopt different definitions of union and intersection given as follows.

Definition 3.7. Let (\mathcal{F}, A) and $(\tilde{\Theta}, B)$ be two fuzzy soft sets over a common universe U and $A \cap B \neq \emptyset$. Then the bi-union of (\mathcal{F}, A) and $(\tilde{\Theta}, B)$ is defined to be the fuzzy soft set $(\tilde{\Xi}, C)$, where $C = A \cap B$ and $\tilde{\Xi}_\delta = \mathcal{F}_\delta \cup \tilde{\Theta}_\delta$ for all $\delta \in C$. This is denoted by $(\tilde{\Xi}, C) = (\mathcal{F}, A)\sqcup(\tilde{\Theta}, B)$.

Definition 3.8. Let (\mathcal{F}, A) and $(\tilde{\Theta}, B)$ be two fuzzy soft sets over a common universe U and $A \cap B \neq \emptyset$. Then the bi-intersection of (\mathcal{F}, A) and $(\tilde{\Theta}, B)$ is defined to be the fuzzy soft set $(\tilde{\Xi}, C)$, where $C = A \cap B$ and $\tilde{\Xi}_\delta = \mathcal{F}_\delta \cap \tilde{\Theta}_\delta$ for all $\delta \in C$. This is denoted by $(\tilde{\Xi}, C) = (\mathcal{F}, A)\cap(\tilde{\Theta}, B)$.

4 Fuzzy Γ-hyperideals in LA-Γ-semihypergroups

In this section, we define the notion of fuzzy left (right) Γ-hyperideals in left almost Γ-semihypergroups. Throughout the paper S will denote an LA-Γ-semihypergroup.
Definition 4.1. Let μ and λ be two fuzzy subsets of S. Then, we have:

\[
\mu \cap \lambda = \min \{\mu(x), \lambda(x)\},
\]

\[
(\mu \Gamma \lambda)(z) = \begin{cases}
\sup \{\min\{\mu(x), \lambda(y)\}\} & \text{if } z \in x \gamma y, \forall \gamma \in \Gamma \\
0 & \text{otherwise},
\end{cases}
\]

for all $x, y, z \in S$.

Definition 4.2. Let μ be a fuzzy subset of S. Then μ is called a sub LA-Γ-semihypergroup of S if for all $x, y \in S$ and $\gamma \in \Gamma$,

\[
\inf_{z \in x \gamma y} \{\mu(z)\} \geq \min\{\mu(x), \mu(y)\}.
\]

Lemma 4.3. Let μ be a fuzzy subset of S. Then μ is a fuzzy sub LA-Γ-semihypergroup of S if and only if $\mu \Gamma \mu \subseteq \mu$.

Proof. The proof is straightforward. \qed

Definition 4.4. Let μ be a fuzzy subset of S. Then, for all $x, y, z \in S$ and $\gamma \in \Gamma$,

(i) μ is called a fuzzy left Γ-hyperideal of S if $\mu(y) \leq \inf_{z \in x \gamma y} \{\mu(z)\}$,

(ii) μ is called a fuzzy right Γ-hyperideal of S if $\mu(x) \leq \inf_{z \in x \gamma y} \{\mu(z)\}$,

(iii) μ is called a fuzzy Γ-hyperideal of S if it is both a fuzzy left Γ-hyperideal and fuzzy right Γ-hyperideal of S.

Example 4.5. Let $S = \{a, b, c, d\}$ and $\Gamma = \{\beta, \gamma\}$ be the sets of binary hyperoperations defined below:

<table>
<thead>
<tr>
<th>β</th>
<th>a</th>
<th>b</th>
<th>c</th>
<th>d</th>
<th>γ</th>
<th>a</th>
<th>b</th>
<th>c</th>
<th>d</th>
</tr>
</thead>
<tbody>
<tr>
<td>a</td>
<td>b</td>
<td>b</td>
<td>${c, d}$</td>
<td>d</td>
<td>a</td>
<td>${a, b}$</td>
<td>b</td>
<td>${c, d}$</td>
<td>d</td>
</tr>
<tr>
<td>b</td>
<td>${a, b}$</td>
<td>${a, b}$</td>
<td>${c, d}$</td>
<td>d</td>
<td>b</td>
<td>b</td>
<td>${a, b}$</td>
<td>${c, d}$</td>
<td>d</td>
</tr>
<tr>
<td>c</td>
<td>${c, d}$</td>
<td>${c, d}$</td>
<td>c</td>
<td>d</td>
<td>c</td>
<td>${c, d}$</td>
<td>${c, d}$</td>
<td>c</td>
<td>d</td>
</tr>
<tr>
<td>d</td>
</tr>
</tbody>
</table>

Clearly S is not a Γ-semihypergroup because $\{a, b\} = (a \beta a) \gamma b \neq a \beta (a \gamma b) = \{b\}$. Thus S is an LA-Γ-semihypergroup because it satisfies the left invertive law. Let μ be a fuzzy subset of S, which is defined as

\[
\mu = \begin{pmatrix} a & b & c & d \\
0.2 & 0.2 & 0.5 & 0.7
\end{pmatrix}.
\]

By routine calculations, it can be seen that μ is a fuzzy Γ-hyperideal of S.

Definition 4.6. For any \(t \in [0, 1] \) and fuzzy subset \(\mu \) of \(S \), the set
\[
U(\mu, t) = \{ x \in S : \mu(x) \geq t \}
\]
is called an upper \(t \)-level cut of \(\mu \).

Theorem 4.7. A fuzzy subset \(\mu \) of \(S \) is a fuzzy left (right) \(\Gamma \)-hyperideal of \(S \) if and only if \(U(\mu, t) \) is a left (right) \(\Gamma \)-hyperideal of \(S \).

Proof. The proof is straightforward. \(\square \)

5 Fuzzy Soft \(\Gamma \)-hyperideals over Left Almost \(\Gamma \)-semihypergroups

In this section, we define the notion of fuzzy soft left (right) \(\Gamma \)-hyperideals over left almost \(\Gamma \)-semihypergroups.

Definition 5.1. Let \(S \) be an LA-\(\Gamma \)-semihypergroup and \((\hat{F}, A)\) be a fuzzy soft set over \(S \). Then \((\hat{F}, A)\) is called a fuzzy soft LA-\(\Gamma \)-semihypergroup over \(S \) if it satisfies
\[
\inf_{z \in x \gamma y} \{\hat{F}_\delta(z)\} \geq \min\{\hat{F}_\delta(x), \hat{F}_\delta(y)\},
\]
for all \(x, y \in S, \gamma \in \Gamma \) and \(\delta \in A \).

Definition 5.2. Let \((\hat{F}, A)\) be a fuzzy soft set over \(S \). Then, for all \(x, y \in S, \gamma \in \Gamma \) and \(\delta \in A \),

(i) \((\hat{F}, A)\) is called a fuzzy soft left \(\Gamma \)-hyperideal over \(S \) if
\[
\hat{F}_\delta(y) \leq \inf_{z \in x \gamma y} \{\hat{F}_\delta(z)\};
\]

(ii) \((\hat{F}, A)\) is called a fuzzy soft right \(\Gamma \)-hyperideal over \(S \) if
\[
\hat{F}_\delta(x) \leq \inf_{z \in x \gamma y} \{\hat{F}_\delta(z)\};
\]

(iii) \((\hat{F}, A)\) is called a fuzzy soft \(\Gamma \)-hyperideal over \(S \) if it is both a fuzzy soft left \(\Gamma \)-hyperideal and fuzzy soft right \(\Gamma \)-hyperideal over \(S \).

Example 5.3. Let \(S = \{a, b, c, d\} \) and \(\Gamma = \{\beta, \gamma\} \) be the sets of binary hyperoperations defined below:

<table>
<thead>
<tr>
<th>(\beta)</th>
<th>(a)</th>
<th>(b)</th>
<th>(c)</th>
<th>(d)</th>
<th>(\gamma)</th>
<th>(a)</th>
<th>(b)</th>
<th>(c)</th>
<th>(d)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(a)</td>
<td>(a)</td>
<td>(a)</td>
<td>(a)</td>
<td>(d)</td>
<td>(a)</td>
<td>(a)</td>
<td>(a)</td>
<td>(a)</td>
<td>(d)</td>
</tr>
<tr>
<td>(b)</td>
<td>(a)</td>
<td>({a, c})</td>
<td>({a, c})</td>
<td>(d)</td>
<td>(b)</td>
<td>({a, b, c})</td>
<td>({a, b, c})</td>
<td>(d)</td>
<td></td>
</tr>
<tr>
<td>(c)</td>
<td>(a)</td>
<td>({b, c})</td>
<td>({b, c})</td>
<td>(d)</td>
<td>(c)</td>
<td>({b, c})</td>
<td>({b, c})</td>
<td>(d)</td>
<td></td>
</tr>
<tr>
<td>(d)</td>
</tr>
</tbody>
</table>
Clearly S is not a Γ-semihypergroup because \(\{a, b, c\} = (c\beta c)\gamma b \neq c\beta(c\gamma b) = \{b, c\} \). Thus S is an LA-Γ-semihypergroup because it satisfies the left invertive law. Let $A = \{\delta, \varepsilon, \kappa, \xi\}$ be the set of parameters. For each parameter $\delta \in A$, \tilde{F}_δ is a fuzzy Γ-hyperideal of S, where \tilde{F}_δ is a mapping given by $\tilde{F}_\delta : S \rightarrow [0, 1]$. For each parameter we define

\[
\tilde{F}_\delta = \left(\frac{a}{0.4}, \frac{b}{0.1}, \frac{c}{0.1}, \frac{d}{0.8} \right), \quad \tilde{F}_\varepsilon = \left(\frac{a}{0.3}, \frac{b}{0.3}, \frac{c}{0.3}, \frac{d}{0.7} \right),
\]

\[
\tilde{F}_\kappa = \left(\frac{a}{0.5}, \frac{b}{0.3}, \frac{c}{0.3}, \frac{d}{0.5} \right), \quad \tilde{F}_\xi = \left(\frac{a}{0.6}, \frac{b}{0.2}, \frac{c}{0.2}, \frac{d}{0.9} \right).
\]

Each \tilde{F}_δ satisfies the conditions of fuzzy Γ-hyperideal of S. Hence $(\tilde{F}, A) = \{\tilde{F}_\delta : \delta \in A\}$ is a fuzzy soft Γ-hyperideal of S.

Definition 5.4. Let (\tilde{F}, A) be a fuzzy soft set over S, for each $t \in [0, 1]$, the set $(\tilde{F}, A)\gamma = (\tilde{F}\gamma, A)$ is called a t-level set of (\tilde{F}, A), where $\tilde{F}\gamma = \{ x \in S : \tilde{F}_\delta (x) \geq t \}$ for each $\delta \in A$.

Theorem 5.5. Let (\tilde{F}, A) be a fuzzy soft set over S, (\tilde{F}, A) is a fuzzy soft LA-Γ-semihypergroup if and only if $(\tilde{F}, A)\gamma$ is a soft LA-Γ-semihypergroup over S for each $t \in [0, 1]$.

Proof. Assume that $(\tilde{F}, A)\gamma$ is a soft LA-Γ-semihypergroup over S for each $t \in [0, 1]$. For each $x_1, x_2 \in S$ and $\delta \in A$, let $t = \min \{ \tilde{F}_\delta (x_1), \tilde{F}_\delta (x_2) \}$, then $x_1, x_2 \in \tilde{F}_\delta\gamma$. Since $\tilde{F}_\delta\gamma$ is an LA-Γ-semihypergroup over S, then for each $\gamma \in \Gamma$, $x_1\gamma x_2 \subseteq \tilde{F}_\delta\gamma$. Therefore for all $z \in x_1\gamma x_2$ we have $\tilde{F}_\delta (z) \geq t$, and so

\[
\inf_{z \in x_1\gamma x_2} \{ \tilde{F}_\delta (z) \} \geq t = \min \{ \tilde{F}_\delta (x_1), \tilde{F}_\delta (x_2)\}, \quad \text{for all } x_1, x_2 \in S, \ \delta \in A \text{ and } \gamma \in \Gamma.
\]

This shows that \tilde{F}_δ is a fuzzy sub LA-Γ-semihypergroup over S. Thus (\tilde{F}, A) is a fuzzy soft LA-Γ-semihypergroup over S.

Conversely, let (\tilde{F}, A) be a fuzzy soft LA-Γ-semihypergroup. For each $\delta \in A$, $t \in [0, 1]$ and $x_1, x_2 \in \tilde{F}_\delta\gamma$ we have $\tilde{F}_\delta (x_1) \geq t$ and $\tilde{F}_\delta (x_2) \geq t$. As \tilde{F}_δ is a fuzzy LA-Γ-semihypergroup over S, thus for $\gamma \in \Gamma$ there exist $z \in x_1\gamma x_2$ such that

\[
\inf_{z \in x_1\gamma x_2} \{ \tilde{F}_\delta (z) \} \geq \min \{ \tilde{F}_\delta (x_1), \tilde{F}_\delta (x_2)\} \geq t.
\]

Therefore for all $z \in x_1\gamma x_2$ we have $z \in \tilde{F}_\delta\gamma$, this implies that $x_1\gamma x_2 \subseteq \tilde{F}_\delta\gamma$, i.e., $\tilde{F}_\delta\gamma$ is a sub LA-Γ-semihypergroup over S. Thus $(\tilde{F}, A)\gamma$ is a soft LA-Γ-semihypergroup over S for each $t \in [0, 1]$. This completes the proof. \[\square\]
Theorem 5.6. Let \((\widehat{\mathcal{F}}, A)\) be a fuzzy soft set over \(S\), \((\widehat{\mathcal{F}}, A)\) is a fuzzy soft left (right) \(\Gamma\)-hyperideal if and only if \((\widehat{\mathcal{F}}, A)^t\) is a soft left (right) \(\Gamma\)-hyperideal over \(S\) for each \(t \in [0, 1]\).

Proof. Assume that \((\widehat{\mathcal{F}}, A)^t\) is a soft left \(\Gamma\)-hyperideal over \(S\) for each \(t \in [0, 1]\). For each \(x \in S\) and \(\delta \in A\), let \(t = \widehat{\mathcal{F}}_\delta(x)\), then \(x \in \widehat{\mathcal{F}}_\delta^t\). Since \(\widehat{\mathcal{F}}_\delta^t\) is a soft \(\Gamma\)-hyperideal over \(S\), then \(y^t x \subseteq \widehat{\mathcal{F}}_\delta^t\) for each \(y \in S\) and \(\gamma \in \Gamma\). Therefore for all \(z \in y^t x\) we have \(\widehat{\mathcal{F}}_\delta(z) \geq t\), and so

\[
\inf_{z \in y^t x} \{\widehat{\mathcal{F}}_\delta(z)\} \geq t = \widehat{\mathcal{F}}_\delta(x), \text{ for all } x, y \in S, \delta \in A \text{ and } \gamma \in \Gamma.
\]

This shows that \(\widehat{\mathcal{F}}_\delta\) is a fuzzy left \(\Gamma\)-hyperideal. Thus \((\widehat{\mathcal{F}}, A)\) is a fuzzy soft left \(\Gamma\)-hyperideal over \(S\).

Conversely, let \((\widehat{\mathcal{F}}, A)\) be a fuzzy soft left \(\Gamma\)-hyperideal. For each \(\delta \in A\), \(t \in [0, 1]\) and \(x \in \widehat{\mathcal{F}}_\delta\) we have \(\widehat{\mathcal{F}}_\delta(x) \geq t\). As \(\widehat{\mathcal{F}}_\delta\) is a fuzzy left \(\Gamma\)-hyperideal over \(S\), thus for \(y \in S\) there exist \(z \in y^t x\) such that

\[
\inf_{z \in y^t x} \{\widehat{\mathcal{F}}_\delta(z)\} \geq \widehat{\mathcal{F}}_\delta(x) \geq t.
\]

Therefore for all \(z \in y^t x\) we have \(z \in \widehat{\mathcal{F}}_\delta^t\), this implies that \(y^t x \subseteq \widehat{\mathcal{F}}_\delta^t\), i.e., \(\widehat{\mathcal{F}}_\delta^t\) is a left \(\Gamma\)-hyperideal over \(S\). Thus \((\widehat{\mathcal{F}}, A)^t\) is a soft left \(\Gamma\)-hyperideal over \(S\) for each \(t \in [0, 1]\). The case for right \(\Gamma\)-hyperideal can be seen in a similar way.

Theorem 5.7. If \((\widehat{\mathcal{F}}, A)\) and \((\widehat{\Theta}, B)\) are two fuzzy soft LA-\(\Gamma\)-semihypergroups over \(S\), then so are \((\widehat{\mathcal{F}}, A)\wedge(\widehat{\Theta}, B)\) and \((\widehat{\mathcal{F}}, A)\wedge(\widehat{\Theta}, B)\).

Proof. We know that \((\widehat{\mathcal{F}}, A)\wedge(\widehat{\Theta}, B) = \left(\widehat{\Xi}, C\right)\), where \(C = A \times B\) and \(\widehat{\Xi}_{(\delta, \varepsilon)} = \widehat{\mathcal{F}}_\delta \cap \widehat{\Theta}_\varepsilon\) for all \((\delta, \varepsilon) \in A \times B\). Now for any \((\delta, \varepsilon) \in A \times B\), since \((\widehat{\mathcal{F}}, A)\) and \((\widehat{\Theta}, B)\) are fuzzy soft LA-\(\Gamma\)-semihypergroups over \(S\), for all \(x, y \in S\), \((\delta, \varepsilon) \in A \times B\) and \(\gamma \in \Gamma\), we have

\[
\inf_{z \in x^t y} \{\widehat{\Xi}_{(\delta, \varepsilon)}(z)\} = \inf_{z \in x^t y} \left\{\min \{\widehat{\mathcal{F}}_\delta(z), \widehat{\Theta}_\varepsilon(z)\}\right\}
\]

\[
= \min \left\{\inf_{z \in x^t y} \widehat{\mathcal{F}}_\delta(z), \inf_{z \in x^t y} \widehat{\Theta}_\varepsilon(z)\right\}
\]

\[
\geq \min \left\{\min \{\widehat{\mathcal{F}}_\delta(x), \widehat{\mathcal{F}}_\delta(y)\}, \min \{\widehat{\Theta}_\varepsilon(x), \widehat{\Theta}_\varepsilon(y)\}\right\}
\]

\[
= \min \left\{\min \{\widehat{\mathcal{F}}_\delta(x), \widehat{\Theta}_\varepsilon(x)\}, \min \{\widehat{\mathcal{F}}_\delta(y), \widehat{\Theta}_\varepsilon(y)\}\right\}
\]

\[
= \min \left\{\widehat{\Xi}_{(\delta, \varepsilon)}(x), \widehat{\Xi}_{(\delta, \varepsilon)}(y)\right\}.
\]

This shows that \((\widehat{\mathcal{F}}, A)\wedge(\widehat{\Theta}, B)\) is a fuzzy soft LA-\(\Gamma\)-semihypergroup over \(S\). The other case can be seen in a similar way.
Theorem 5.8. If \((\hat{F}, A)\) and \((\hat{\Theta}, B)\) are two fuzzy soft left (right) \(\Gamma\)-hyperideals over \(S\), then so are \((\hat{F}, A)\cap(\hat{\Theta}, B)\) and \((\hat{F}, A)\cap(\hat{\Theta}, B)\).

Proof. Let \((\hat{F}, A)\) and \((\hat{\Theta}, B)\) be two fuzzy soft left \(\Gamma\)-hyperideals over \(S\). We know that \((\hat{F}, A)\cap(\hat{\Theta}, B) = (\hat{\Xi}, C)\), where \(C = A \times B\) and \(\hat{\Xi}_{(\delta, \varepsilon)} = \hat{F}_\delta \cap \hat{\Theta}_\varepsilon\) for all \((\delta, \varepsilon) \in A \times B\). Now for any \((\delta, \varepsilon) \in A \times B\), since \((\hat{F}, A)\) and \((\hat{\Theta}, B)\) are fuzzy soft left \(\Gamma\)-hyperideals over \(S\), for all \(x, y \in S\), \((\delta, \varepsilon) \in A \times B\) and \(\gamma \in \Gamma\), we have

\[
\inf_{z \in x \gamma y} \{\hat{\Xi}_{(\delta, \varepsilon)}(z)\} = \inf_{z \in x \gamma y} \{\min\{\hat{F}_\delta(z), \hat{\Theta}_\varepsilon(z)\}\} = \min \left\{\inf_{z \in x \gamma y} \hat{F}_\delta(z), \inf_{z \in x \gamma y} \hat{\Theta}_\varepsilon(z)\right\} \geq \min \left\{\hat{F}_\delta(y), \hat{\Theta}_\varepsilon(y)\right\} = \hat{\Xi}_{(\delta, \varepsilon)}(y).
\]

This shows that \((\hat{F}, A)\cap(\hat{\Theta}, B)\) is a fuzzy soft left \(\Gamma\)-hyperideal over \(S\). The other cases can be seen in a similar way. \(\Box\)

Theorem 5.9. If \((\hat{F}, A)\) and \((\hat{\Theta}, B)\) are two fuzzy soft LA-\(\Gamma\)-semihypergroups over \(S\), then so are \((\hat{F}, A)\cap(\hat{\Theta}, B)\) and \((\hat{F}, A)\cap(\hat{\Theta}, B)\).

Proof. We know that \((\hat{F}, A)\cap(\hat{\Theta}, B) = (\hat{\Xi}, C)\), where \(C = A \times B\) and \(\hat{\Xi}_{(\delta, \varepsilon)} = \hat{F}_\delta \cup \hat{\Theta}_\varepsilon\) for all \((\delta, \varepsilon) \in A \times B\). Now for any \((\delta, \varepsilon) \in A \times B\), since \((\hat{F}, A)\) and \((\hat{\Theta}, B)\) are fuzzy soft LA-\(\Gamma\)-semihypergroups over \(S\), for all \(x, y \in S\), \((\delta, \varepsilon) \in A \times B\) and \(\gamma \in \Gamma\), we have

\[
\inf_{z \in x \gamma y} \{\hat{\Xi}_{(\delta, \varepsilon)}(z)\} = \inf_{z \in x \gamma y} \{\hat{F}_\delta(z) \cup \hat{\Theta}_\varepsilon(z)\} = \inf_{z \in x \gamma y} \{\max\{\hat{F}_\delta(z), \hat{\Theta}_\varepsilon(z)\}\} = \max \left\{\inf_{z \in x \gamma y} \hat{F}_\delta(z), \inf_{z \in x \gamma y} \hat{\Theta}_\varepsilon(z)\right\} \geq \max \left\{\min\{\hat{F}_\delta(x), \hat{F}_\delta(y)\}, \min\{\hat{\Theta}_\varepsilon(x), \hat{\Theta}_\varepsilon(y)\}\right\} = \min \left\{\max\{\hat{F}_\delta(x), \hat{\Theta}_\varepsilon(x)\}, \max\{\hat{F}_\delta(y), \hat{\Theta}_\varepsilon(y)\}\right\} = \min \left\{\hat{\Xi}_{(\delta, \varepsilon)}(x), \hat{\Xi}_{(\delta, \varepsilon)}(y)\right\}.
\]

This shows that \((\hat{F}, A)\cap(\hat{\Theta}, B)\) is a fuzzy soft LA-\(\Gamma\)-semihypergroup over \(S\). The other case can be seen in a similar way. \(\Box\)

Theorem 5.10. If \((\hat{F}, A)\) and \((\hat{\Theta}, B)\) are two fuzzy soft left (right) \(\Gamma\)-hyperideals over \(S\), then so are \((\hat{F}, A)\cap(\hat{\Theta}, B)\) and \((\hat{F}, A)\cap(\hat{\Theta}, B)\).
Proof. Let \((\mathcal{F}, A)\) and \((\mathcal{\tilde{\Theta}}, B)\) be two fuzzy soft left \(\Gamma\)-hyperideals over \(S\). We know that \((\mathcal{F}, A)\widehat{\vee}(\mathcal{\tilde{\Theta}}, B) = \left(\mathcal{\hat{\Xi}}, C\right)\), where \(C = A \times B\) and \(\mathcal{\hat{\Xi}} = \mathcal{F}_\delta \cup \mathcal{\tilde{\Theta}}\) for all \((\delta, \varepsilon) \in A \times B\). Now for any \((\delta, \varepsilon) \in A \times B\), since \((\mathcal{F}, A)\) and \((\mathcal{\tilde{\Theta}}, B)\) are fuzzy soft left \(\Gamma\)-hyperideals over \(S\), for all \(x, y \in S\), \((\delta, \varepsilon) \in A \times B\) and \(\gamma \in \Gamma\), we have
\[
\inf_{z \in x \gamma y} \left\{ \widehat{\Xi}(\delta, \varepsilon)(z) \right\} = \inf_{z \in x \gamma y} \left\{ \max \left\{ \mathcal{F}_\delta(z), \mathcal{\tilde{\Theta}}(\varepsilon)(z) \right\} \right\} \\
= \max \left\{ \inf_{z \in x \gamma y} \mathcal{F}_\delta(z), \inf_{z \in x \gamma y} \mathcal{\tilde{\Theta}}(\varepsilon)(z) \right\} \\
\geq \max \left\{ \mathcal{F}_\delta(y), \mathcal{\tilde{\Theta}}(\varepsilon)(y) \right\} \\
= \hat{\Xi}(\delta, \varepsilon)(y).
\]
This shows that \((\mathcal{F}, A)\widehat{\vee}(\mathcal{\tilde{\Theta}}, B)\) is a fuzzy soft left \(\Gamma\)-hyperideal over \(S\). The other cases can be seen in a similar way. \(\Box\)

Theorem 5.11. If \((\mathcal{F}, A)\) and \((\mathcal{\tilde{\Theta}}, B)\) are two fuzzy soft \(LA\)-\(\Gamma\)-semihypergroups over \(S\), then so is \((\mathcal{F}, A)\bar{\cap}(\mathcal{\tilde{\Theta}}, B)\).

Proof. We know that \((\mathcal{F}, A)\bar{\cap}(\mathcal{\tilde{\Theta}}, B) = \left(\mathcal{\hat{\Xi}}, C\right)\), where \(C = A \cup B\) and for all \(\delta \in C\)
\[
\hat{\Xi}_\delta = \begin{cases} \\
\mathcal{F}_\delta & \text{if } \delta \in A \setminus B \\
\mathcal{\tilde{\Theta}}_\delta & \text{if } \delta \in B \setminus A \\
\min \{ \mathcal{F}_\delta, \mathcal{\tilde{\Theta}}_\delta \} & \text{if } \delta \in A \cap B. \\
\end{cases}
\]
Now for any \(\delta \in C\) and \(x, y \in S\), we consider the following cases

Case 1: For any \(\delta \in A \setminus B\) and \(\gamma \in \Gamma\),
\[
\inf_{z \in x \gamma y} \left\{ \hat{\Xi}_\delta(z) \right\} = \inf_{z \in x \gamma y} \left\{ \mathcal{F}_\delta(z) \right\} \geq \min \{ \mathcal{F}_\delta(x), \mathcal{F}_\delta(y) \} \\
= \min \left\{ \hat{\Xi}_\delta(x), \hat{\Xi}_\delta(y) \right\}.
\]

Case 2: For any \(\delta \in B \setminus A\) and \(\gamma \in \Gamma\),
\[
\inf_{z \in x \gamma y} \left\{ \hat{\Xi}_\delta(z) \right\} = \inf_{z \in x \gamma y} \left\{ \mathcal{\tilde{\Theta}}_\delta(z) \right\} \geq \min \{ \mathcal{\tilde{\Theta}}_\delta(x), \mathcal{\tilde{\Theta}}_\delta(y) \} \\
= \min \left\{ \hat{\Xi}_\delta(x), \hat{\Xi}_\delta(y) \right\}.
\]

Case 3: For any \(\delta \in A \cap B\) and \(\gamma \in \Gamma\), then \(\hat{\Xi}_\delta = \mathcal{F}_\delta \cap \mathcal{\tilde{\Theta}}_\delta\). Analogous to the proof of Theorem 5.7, we have
\[
\inf_{z \in x \gamma y} \left\{ \hat{\Xi}_\delta(z) \right\} \geq \min \left\{ \hat{\Xi}_\delta(x), \hat{\Xi}_\delta(y) \right\}.
\]
Thus in any case we have \(\inf_{z \in x \gamma y} \{ \hat{\Xi}_\delta(z) \} \geq \min \{ \hat{\Xi}_\delta(x), \hat{\Xi}_\delta(y) \} \), and so \((\hat{F}, A) \cap (\hat{\Theta}, B)\) is a fuzzy soft LA-\(\Gamma\)-semihypergroup over \(S\).

Theorem 5.12. If \((\hat{F}, A)\) and \((\hat{\Theta}, B)\) are two fuzzy soft left (right) \(\Gamma\)-hyperideals over \(S\), then so is \((\hat{F}, A) \cap (\hat{\Theta}, B)\).

Proof. Let \((\hat{F}, A)\) and \((\hat{\Theta}, B)\) be two fuzzy soft left \(\Gamma\)-hyperideals over \(S\). We know that \((\hat{F}, A) \cap (\hat{\Theta}, B) = \left(\hat{\Xi}, C\right)\), where \(C = A \cup B\) and for all \(\delta \in C\)

\[
\hat{\Xi}_\delta = \begin{cases}
\hat{F}_\delta & \text{if } \delta \in A \setminus B \\
\hat{\Theta}_\delta & \text{if } \delta \in B \setminus A \\
\min \{ \hat{F}_\delta, \hat{\Theta}_\delta \} & \text{if } \delta \in A \cap B.
\end{cases}
\]

Now for any \(\delta \in C\) and \(x, y \in S\), we consider the following cases

Case 1: For any \(\delta \in A \setminus B\) and \(\gamma \in \Gamma\),

\[
\inf_{z \in x \gamma y} \{ \hat{\Xi}_\delta(z) \} = \inf_{z \in x \gamma y} \{ \hat{F}_\delta(z) \} \geq \hat{F}_\delta(y) = \hat{\Xi}_\delta(y).
\]

Case 2: For any \(\delta \in B \setminus A\) and \(\gamma \in \Gamma\),

\[
\inf_{z \in x \gamma y} \{ \hat{\Xi}_\delta(z) \} = \inf_{z \in x \gamma y} \{ \hat{\Theta}_\delta(z) \} \geq \hat{\Theta}_\delta(y) = \hat{\Xi}_\delta(y).
\]

Case 3: For any \(\delta \in A \cap B\) and \(\gamma \in \Gamma\), then \(\hat{\Xi}_\delta = \hat{F}_\delta \cap \hat{\Theta}_\delta\). Analogous to the proof of Theorem 5.8, we have

\[
\inf_{z \in x \gamma y} \{ \hat{\Xi}_\delta(z) \} \geq \hat{\Xi}_\delta(y).
\]

Thus in any case we have \(\inf_{z \in x \gamma y} \{ \hat{\Xi}_\delta(z) \} \geq \hat{\Xi}_\delta(y)\), and so \((\hat{F}, A) \cap (\hat{\Theta}, B)\) is a fuzzy soft left \(\Gamma\)-hyperideal over \(S\). The other case can be proved in a similar way.

Theorem 5.13. If \((\hat{F}, A)\) and \((\hat{\Theta}, B)\) are two fuzzy soft LA-\(\Gamma\)-semihypergroups over \(S\), then so is \((\hat{F}, A) \cup (\hat{\Theta}, B)\).

Proof. The proof of this theorem is similar to the proof of Theorem 5.11.

Theorem 5.14. If \((\hat{F}, A)\) and \((\hat{\Theta}, B)\) are two fuzzy soft left (right) \(\Gamma\)-hyperideals over \(S\), then so is \((\hat{F}, A) \cup (\hat{\Theta}, B)\).

Proof. The proof of this theorem is similar to the proof of Theorem 5.12.
References

Received: March 4, 2013