Two Fixed Point Theorems for Maps on Incomplete G-Metric Spaces

Zead Mustafa
Department of Mathematics, The Hashemite University
P.O. Box 150459, Zarqa 13115, Jordan
zmagablih@hu.edu.jo

Tran Van An
Department of Mathematics, Vinh University
Vinh City, Nghe An Province, Vietnam
andhv@yahoo.com

Nguyen Van Dung
Department of Mathematics, Dong Thap University
Cao Lanh City, Dong Thap Province, Vietnam
nvdung@dthu.edu.vn, nguyendungtc@yahoo.com

Le Thanh Quan
18th Post-graduate Course
Department of Mathematics, Vinh University, Vinh City
Nghe An Province, Vietnam
lethanhquan82@gmail.com

Abstract. In this paper, we prove two fixed point theorems on incomplete G-metric spaces. Examples are given to show that our results are proper generalizations of main results in [6].

Mathematics Subject Classification: Primary 47H10, 54H25; Secondary 54D99, 54E99
Keywords: fixed point, G-metric space

1. Introduction and preliminaries

In [7], Mustafa and Sims introduced the concept of G-metric spaces as follows.

Definition 1.1 ([7], Definition 3). Let X be a nonempty set and $G : X \times X \times X \rightarrow [0, \infty)$ satisfy the following

1. $G(x, y, z) = 0$ if $x = y = z$.
2. $0 < G(x, x, y)$ for all $x \neq y \in X$.
3. $G(x, x, y) \leq G(x, y, z)$ for all $x, y \neq z \in X$.
4. The symmetry on three variables: $G(x, y, z) = G(x, z, y) = G(y, x, z) = G(y, z, x) = G(z, x, y) = G(z, y, x)$ for all $x, y, z \in X$.
5. The rectangle inequality: $G(x, y, z) \leq G(x, a, a) + G(a, y, z)$ for all $x, y, z, a \in X$.

Then G is called a G-metric on X and the pair (X, G) is called a G-metric space.

An interesting work relating to G-metric spaces is to generalize fixed point theorems on metric spaces into this setting. In this way, many results on the fixed point problem of G-metric spaces have been obtained ([1]-[5]), ([7]-[15]). In [6], Mustafa et al have proved the existence of fixed points of maps defined on G-metric space where the completeness is replaced with weaker conditions as follows.

Theorem 1.2 ([6], Theorem 2.1). Let (X, G) be a G-metric space and $T : X \rightarrow X$ be a map such that

1. $G(Tx, Ty, Tz) \leq a.G(x, Tx, Tx) + b.G(y, Ty, Ty) + c.G(z, Tz, Tz)$ for all $x, y, z \in X$ and $a, b, c \geq 0$ with $0 \leq a + b + c < 1$;
2. T is G-continuous at a point $u \in X$;
3. There is $x \in X$; $\{T^n x\}$ is G-convergent to some $u \in X$.

Then u is the unique fixed point of T.

Theorem 1.3 ([6], Theorem 2.5). Let (X, G) be a G-continuous map such that

1. $G(Tx, Ty, Tz) \leq k.\{G(x, Tx, Tx) + G(y, Ty, Ty) + G(z, Tz, Tz)\}$ for all $x, y, z \in M$ where M is an everywhere dense subset of X with respect the G-metric topology and $0 \leq k < \frac{1}{6}$.
2. There exists $x \in X$ such that the sequence $\{T^n x\}$ is G-convergent to some $u \in X$.

Then u is the unique fixed point of T.
Continuing these results, we prove two fixed point theorems on incomplete \(G \)-metric spaces. Examples are given to show that our results are proper generalizations of main results in [6].

First we recall some notions and lemmas.

Definition 1.4 ([7]). Let \((X, G)\) be a \(G \)-metric space and \(x_0 \in X, r > 0 \).

1. The set \(B_G(x_0, r) = \{ x \in X : G(x_0, x, x) < r \} \) is called a \(G \)-ball with center \(x_0 \) and radius \(r \).
2. The family of all \(G \)-balls forms a base of a topology \(\tau(G) \) on \(X \), and \(\tau(G) \) is called a \(G \)-metric topology.
3. The sequence \(\{x_n\} \) is said to be \(G \)-convergent to \(x \) in \(X \) if \(x_n \to x \) in the \(G \)-metric topology \(\tau(G) \).
4. The sequence \(\{x_n\} \) is said to be \(G \)-Cauchy in \(X \) if \(G(x_n, x_m, x_l) \to 0 \) as \(m, n, l \to \infty \).
5. \((X, G)\) is called a complete \(G \)-metric space if every \(G \)-Cauchy sequence is \(G \)-convergent.

Lemma 1.5 ([7], Proposition 6). Let \((X, G)\) be a \(G \)-metric space. Then the following statements are equivalent.

1. \(x_n \) is \(G \)-convergent to \(x \) in \(X \).
2. \(G(x_n, x_n, x) \to 0 \) as \(n \to \infty \).
3. \(G(x_n, x, x) \to 0 \) as \(n \to \infty \).
4. \(G(x_n, x_m, x) \to 0 \) as \(n, m \to \infty \).

Lemma 1.6 ([7], Proposition 7). Let \(T : X \to X' \) be a map from a \(G \)-metric space \((X, G)\) to a \(G \)-metric space \((X', G')\). Then \(T \) is \(G \)-continuous at \(x \in X \) if and only if \(T \) is \(G \)-sequentially continuous at \(x \), that is, whenever \(\{x_n\} \) is \(G \)-convergent to \(x \) we have \(\{f(x_n)\} \) is \(G \)-convergent to \(f(x) \).

Lemma 1.7 ([7], Proposition 8). Let \((X, G)\) be a \(G \)-metric space. Then \(G \) is jointly continuous in all three of its variables.

Lemma 1.8 ([7], Proposition 9). Let \((X, G)\) be a \(G \)-metric space. Then the following statements are equivalent.

1. \(\{x_n\} \) is a \(G \)-Cauchy sequence.
2. \(G(x_n, x_m, x_m) \to 0 \) as \(m, n \to \infty \).

2. **Main results**

Theorem 2.1. Let \((X, G)\) be a \(G \)-metric space and \(T : X \to X \) be a map such that

- \((A_1)\) \(G(Tx, Ty, Tz) \leq k \cdot \max \{G(x, y, z), G(x, Tx, Tx), G(y, Ty, Ty), G(z, Tz, Tz)\} \) for all \(x, y, z \in X \) and some \(k \in [0, 1) \);
- \((A_2)\) \(T \) is \(G \)-continuous at \(u \in X \);
- \((A_3)\) There exists \(x \in X \) such that the sequence \(\{T^nx\} \) has a subsequence \(\{T^{n_i}x\} \) which is \(G \)-convergent to some \(u \in X \).
Then u is the unique fixed point of T.

Proof. Since T is G-continuous at u and $\{T^n x\}$ is G-convergent to u, the sequence $\{T(T^n x)\}$ is G-convergent to Tu by Lemma 1.6, that is, $\{T^{n+1} x\}$ is G-convergent to Tu. We shall prove $Tu = u$. Suppose to the contrary that $Tu \neq u$. Then we get $G(u, Tu, Tu) > 0$. Since $\{T^n x\}$ is G-convergent to u and $\{T^{n+1} x\}$ is G-convergent to Tu, by choosing $\varepsilon = \frac{G(u, Tu, Tu)}{2} > 0$ and using Lemma 1.7 there exists $N_1 \in \mathbb{N}$ such that for all $i > N_1$ we have

$$G(T^{n_i} x, T^{n_i+1} x, T^{n_i+1} x) > \varepsilon. \quad (2.1)$$

Otherwise, by using the condition (A_1) we have

$$G(T^{n_i+1} x, T^{n_i+2} x, T^{n_i+2} x) \leq k \cdot \max \left\{ G(T^{n_i} x, T^{n_i+1} x, T^{n_i+1} x), G(T^{n_i} x, T^{n_i+1} x, T^{n_i+1} x), G(T^{n_i+1} x, T^{n_i+2} x, T^{n_i+2} x), G(T^{n_i+1} x, T^{n_i+2} x, T^{n_i+2} x) \right\}. $$

Since $0 \leq k < 1$, we get $G(T^{n_i+1} x, T^{n_i+2} x, T^{n_i+2} x) \leq k \cdot G(T^{n_i} x, T^{n_i+1} x, T^{n_i+1} x)$. Now for all $i > N_1$, by continuing the above process we obtain

$$G(T^{n_i} x, T^{n_i+1} x, T^{n_i+1} x) \leq k \cdot G(T^{n_i-1} x, T^{n_i-1} x) \leq k^2 \cdot G(T^{n_i-2} x, T^{n_i-2} x) \leq \ldots \leq k^{n_i-n_j} G(T^{n_j} x, T^{n_j+1} x, T^{n_j+1} x). \quad (2.2)$$

Taking the limit as $l \to \infty$ in (2.2) we get $\lim_{l \to \infty} G(T^{n_i} x, T^{n_i+1} x, T^{n_i+1} x) = 0$. It is a contradiction to (2.1). This proves that $Tu = u$.

Next we prove the uniqueness of the fixed point of T. Let u, v be fixed points of T, that is, $Tu = u$ and $Tv = v$. It follows from the condition (A_1) we have

$$G(u, v, v) = G(Tu, Tv, Tv) \leq k \cdot \max \left\{ G(u, v, v), G(u, Tu, Tu), G(v, Tv, Tv), G(v, Tv, Tv) \right\} = k \cdot G(u, v, v). $$

Since $0 \leq k < 1$, we get $G(u, v, v) = 0$. From the condition (G_2) we obtain $u = v$. This proves that the fixed point of T is unique. \qed

Remark 2.2. For all $x, y, z \in X$ and $a, b, c \geq 0$ with $0 \leq a + b + c < 1$ we have

$$G(T x, T y, T z) \leq a G(x, T x, T x) + b G(y, T y, T y) + c G(z, T z, T z) \leq (a + b + c) \max \left\{ G(x, T x, T x), G(y, T y, T y), G(z, T z, T z) \right\} \leq (a + b + c) \max \left\{ G(x, y, z), G(x, T x, T x), G(y, T y, T y), G(z, T z, T z) \right\} = k \cdot \max \left\{ G(x, y, z), G(x, T x, T x), G(y, T y, T y), G(z, T z, T z) \right\}$$

where $k = \frac{a}{a + b + c}$.
Two fixed point theorems for maps on incomplete G-metric spaces 2275

with $k = a + b + c \in [0, 1)$. This proves that Theorem 1.2 is a consequence of Theorem 2.1.

The following example shows that Theorem 2.1 is a proper generalization of Theorem 1.2.

Example 2.3. Let $X = [0, 1)$ and $G : X \times X \times X \to \mathbb{R}^+$ be given by

$$G(x, y, z) = |x - y| + |y - z| + |z - x|$$

for all $x, y, z \in X$ and $T : X \to X$ be given by $T(x) = \frac{4}{5}x$ for all $x \in X$.

By [8, Example 1.2] we have (X, G) is a G-metric space. Next we will show that (X, G) is not complete. Indeed, we consider the sequence $\{x_n\}$ where $x_n = 1 - \frac{1}{n}$ for all $n \in \mathbb{N}$ to get

g(x_m, x_n, x_l) \\
= |x_m - x_n| + |x_n - x_l| + |x_m - x_l| \\
= |(1 - \frac{1}{m}) - (1 - \frac{1}{n})| + |(1 - \frac{1}{n}) - (1 - \frac{1}{l})| + |(1 - \frac{1}{m}) - (1 - \frac{1}{l})| \\
= \frac{1}{n} - \frac{1}{m} + \frac{1}{l} - \frac{1}{n} + \frac{1}{l} - \frac{1}{n}.

Taking the limit as $m, n, l \to \infty$ in (2.3) we obtain $G(x_m, x_n, x_l) \to 0$. Then $\{x_n\}$ is a G-Cauchy sequence. Suppose to the contrary that $x_n \to x$ in X.

Then $G(x, x, x_n) = 2|x - 1 + \frac{1}{n}|$ which is convergent to 0 as $n \to \infty$, that implies $x = 1$. It is a contradiction since $1 \notin X$. Therefore, the sequence $\{x_n\}$ is not G-convergent in X. This proves that (X, G) is not complete.

Next we will show that Theorem 2.1 is applicable to T. For all $x, y, z \in X$ we have

$$G(x, Tx, Tx) = |x - Tx| + |Tx - Tx| + |Tx - x| = \frac{2}{5}x$$

and

$$G(y, Ty, Ty) = \frac{2}{5}y, \quad G(z, Tz, Tz) = \frac{2}{5}z.$$
Therefore,

\[G(Tx, Ty, Tz) = |Tx - Ty| + |Ty - Tz| + |Tz - Tx| \]

\[= \left| \frac{4}{5}x - \frac{4}{5}y \right| + \left| \frac{4}{5}y - \frac{4}{5}z \right| + \left| \frac{4}{5}z - \frac{4}{5}x \right| \]

\[= \frac{4}{5}(|x - y| + |y - z| + |z - x|) \]

\[\leq \frac{9}{10}(|x - y| + |y - z| + |z - x|) \]

\[\leq \frac{9}{10} \max \left\{ |x - y| + |y - z| + |z - x|, \frac{2}{5}, \frac{2}{5}, \frac{2}{5} \right\} \]

\[= k. \max \left\{ G(x, y, z), G(x, Tx, Tx), G(y, Ty, Ty), G(z, Tz, Tz) \right\} \]

where \(k = \frac{9}{10} \). This proves that \(T \) satisfies the condition \((A_1)\) in Theorem 2.1.

For each \(\varepsilon > 0, \delta = \varepsilon \) and \(G(0, y, z) = |0 - y| + |y - z| + |0 - z| < \delta \) we have

\[G(T0, Ty, Tz) = |0 - \frac{4y}{5}| + \left| \frac{4y}{5} - \frac{4z}{5} \right| + |0 - \frac{4z}{5}| \]

\[= \frac{4}{5}(|0 - y| + |y - z| + |0 - z|) = \frac{4}{5}G(0, y, z) \]

\[< \varepsilon. \]

This proves that \(T \) is \(G \)-continuous at \(0 \in X \), that is, \(T \) satisfies the condition \((A_2)\) of Theorem 2.1.

By choosing \(x = \frac{1}{4} \in X \) we have \(T^n(\frac{1}{4}) = \frac{1}{4}(\frac{4}{5})^n \) that is \(G \)-convergent to \(0 \in X \). Then \(T \) satisfies the condition \((A_3)\) in Theorem 2.1.

Therefore, all assumptions of Theorem 2.1 are satisfied. Then Theorem 2.1 is applicable to \(T \). We see that \(x = 0 \) is the unique fixed point of \(T \).

Now we show that \(T \) does not satisfy the condition \((1)\) in Theorem 1.2. For all \(x, y, z \in X \) we may assume that \(x \geq y \geq z \), then

\[G(Tx, Ty, Tz) = |Tx - Ty| + |Ty - Tz| + |Tz - Tx| \]

\[= \left| \frac{4}{5}x - \frac{4}{5}y \right| + \left| \frac{4}{5}y - \frac{4}{5}z \right| + \left| \frac{4}{5}z - \frac{4}{5}x \right| \]

\[= \frac{4}{5}(x - y + y - z - z + x) = \frac{8}{5}(x - z) \]

and

\[\max \left\{ G(x, Tx, Tx), G(y, Ty, Ty), G(z, Tz, Tz) \right\} = \max \left\{ \frac{2}{5}x, \frac{2}{5}y, \frac{2}{5}z \right\} = \frac{2}{5}x. \]
If T satisfies the condition (1) in Theorem 1.2, then
\begin{equation}
G(Tx, Ty, Tz) \leq aG(x, Tx, Tx) + bG(y, Ty, Ty) + cG(z, Tz, Tz)
\end{equation}
\begin{equation}
\leq (a + b + c) \max \{G(x, Tx, Tx), G(y, Ty, Ty), G(z, Tz, Tz)\}
\end{equation}
for all $x, y, z \in X$ and $a, b, c \geq 0$ with $0 \leq a + b + c < 1$. By combining (2.4), (2.5) and (2.6) we have
\begin{equation}
\frac{8}{5}(x - z) \leq (a + b + c)\frac{2}{5}x
\end{equation}
which is equivalent to
\begin{equation}
4x - 4z \leq (a + b + c)x.
\end{equation}
This inequality does not hold if $x > y > z = \frac{3}{4}x$ because of $0 \leq (a + b + c) < 1$. That is, the condition (1) in Theorem 1.2 does not hold.

Theorem 2.4. Let (X, G) be a G-metric space and $T : X \rightarrow X$ be a G-continuous map such that
\begin{itemize}
 \item[(B1)] $G(Tx, Ty, Tz) \leq k \cdot \max \{G(x, y, z), G(x, Tx, Tx), G(y, Ty, Ty), G(z, Tz, Tz)\}$
 \quad for all $x, y, z \in M$ where M is an everywhere dense subset of X with respect the G-metric topology and $0 \leq k < \frac{1}{2}$
 \item[(B2)] There exists $x \in X$ such that the sequence $\{T^n x\}$ is G-convergent to some $u \in X$.
\end{itemize}
Then u is the unique fixed point of T.

Proof. For all $x, y, z \in X$, since $\overline{M} = X$, there exist sequences $\{x_n\}, \{y_n\}, \{z_n\}$ in M such that $x_n \rightarrow x, y_n \rightarrow y$ and $z_n \rightarrow z$. From the condition (G_5) we have
\begin{equation}
G(Tz, Ty, Ty) \leq G(Tz, Tz_n, Tz_n) + G(Tz_n, Ty, Ty)
\leq G(Tz, Tz_n, Tz_n) + G(Tz_n, Ty_n, Ty_n) + G(Ty_n, Ty, Ty).
\end{equation}
Since $y_n, z_n \in M$ for all $n \in \mathbb{N}$, from the condition (B_1) we have
\begin{equation}
G(Tz_n, Ty_n, Ty_n) \leq k \cdot \max \{G(z_n, y_n, y_n), G(z_n, Tz_n, Tz_n), G(y_n, Ty_n, Ty_n)\}
\end{equation}
Using the condition (G_5) again we get
\begin{equation}
G(z_n, y_n, y_n) \leq G(z_n, z, z) + G(z, y_n, y_n)
= G(z_n, z, z) + G(y_n, y_n, z)
\leq G(z_n, z, z) + G(y_n, y_n, y) + G(y, y, z)
\leq G(z_n, z, z) + G(y_n, y_n, y) + G(x, y, z)
\end{equation}
and

\[(2.10) \quad G(z_n, Tz_n, Tz_n) \leq G(z_n, z, z) + G(z, Tz_n, Tz_n) \]

and

\[(2.11) \quad G(y_n, Ty_n, Ty_n) \leq G(y_n, y, y) + G(y, Ty_n, Ty_n) \]

From (2.8), (2.9), (2.10) and (2.11) we have

\[(2.12) \quad G(Tz_n, Ty_n, Ty_n) \leq k \cdot \max \{G(z_n, y_n, y_n), G(z_n, Tz_n, Tz_n), G(y_n, Ty_n, Ty_n)\} \]

From (2.7) and (2.12) we get

\[(2.13) \quad G(Tz, Ty, Ty) \]

Since \(T\) is \(G\)-continuous and \(y_n \to y, z_n \to z\), by using Lemma 1.6 we have

\[Ty_n \to Ty, Tz_n \to Tz.\]

On the other hand, by using Lemma 1.5 we get

\[y_n \to y, z_n \to z, Ty_n \to Ty, Tz_n \to Tz.\]

This implies that

\[G(y_n, y, y) \to 0, G(z_n, z, z) \to 0, G(Ty_n, Ty_n) \to 0, G(Tz_n, Tz_n) \to 0\]

as \(n \to \infty\). Therefore, by taking the limit as \(n \to \infty\) in (2.13) we get

\[(2.14) \quad G(Tz, Ty, Ty) \leq k \cdot \max \{G(x, y, z), G(y, Ty, Ty), G(z, Tz, Tz)\} \]

Since \(y_n, x_n \in M\) for all \(n \in \mathbb{N}\), by a similar argument we obtain

\[(2.15) \quad G(Tx, Ty, Ty) \leq k \cdot \max \{G(x, y, z), G(y, Ty, Ty), G(x, Tx, Tx)\} \].
It follows from \((G_5), (2.14)\) and \((2.15)\) we have
\[
G(Tx, Ty, Tz) \leq G(Tx, Ty, Ty) + G(Tz, Ty, Ty) \\
\leq k \cdot \max \left\{ G(x, y, z), G(y, Ty, Ty), G(z, Tz, Tz) \right\} \\
+ k \cdot \max \left\{ G(x, y, z), G(y, Ty, Ty), G(x, Tx, Tx) \right\} \\
\leq 2k \cdot \max \left\{ G(x, y, z), G(x, Tx, Tx), G(y, Ty, Ty), G(z, Tz, Tz) \right\}.
\]
Therefore,
\[
G(Tx, Ty, Tz) \leq 2k \cdot \max \left\{ G(x, y, z), G(x, Tx, Tx), G(y, Ty, Ty), G(z, Tz, Tz) \right\} \\
\text{for all } x, y, z \in X \text{ and } 0 \leq 2k < 1. \text{ It follows from Theorem 2.1 that } u \text{ is a unique fixed point of } T.
\]

Remark 2.5. For all \(x, y, z \in M\) and \(0 \leq k < \frac{1}{6}\) we have
\[
G(Tx, Ty, Tz) \leq k \cdot \max \left\{ G(x, Tz, Tz) + G(y, Ty, Ty) + G(z, Tz, Tz) \right\} \\
\leq 3k \cdot \max \left\{ G(x, Tx, Tx), G(y, Ty, Ty), G(z, Tz, Tz) \right\} \\
\leq 3k \cdot \max \left\{ G(x, y, z), G(x, Tx, Tx), G(y, Ty, Ty), G(z, Tz, Tz) \right\}.
\]
Since \(0 \leq k < \frac{1}{6}\) we get \(0 \leq 3k < \frac{1}{2}\). Therefore, Theorem 1.3 is a consequence of Theorem 2.4.

The following example shows that Theorem 2.4 is a proper generalization of Theorem 1.3.

Example 2.6. Let \(X = [0; 1]\), \(M = (0; 1)\) be an everywhere dense subset of \(X\) and \(G : X \times X \times X \to \mathbb{R}^+\) be a map given by
\[
G(x, y, z) = |x - y| + |y - z| + |z - x|
\]
for all \(x, y, z \in X\); \(T : X \to X\) be a map given by \(T(x) = \frac{2}{5}x\) for all \(x \in X\).

As in Example 2.3 we have \((X, G)\) is a \(G\)-metric space. For each \(a \in X\) and \(\varepsilon > 0\) we put \(\delta = \varepsilon\). Then for all \(x, y \in X\) with
\[
G(a, y, z) = |a - y| + |y - z| + |a - z| < \delta
\]
we have
\[
G(T(a), T(y), T(z)) = \left| \frac{2a}{5} - \frac{2y}{5} \right| + \left| \frac{2y}{5} - \frac{2z}{5} \right| + \left| \frac{2a}{5} - \frac{2z}{5} \right| = \frac{2}{5} G(a, y, z) < \varepsilon.
\]
This proves that \(T\) is \(G\)-continuous at \(a\).

Next, for all \(x, y, z \in M\) we have
\[
G(x, y, z) = |x - y| + |y - z| + |z - x|
\]
\[G(x, Tx, Tx) = |x - Tx| + |Tx - Tx| + |Tx - x| = \frac{6}{5}x. \]

Similarly we get
\[G(y, Ty, Ty) = \frac{6}{5}y, \text{ and } G(z, Tz, Tz) = \frac{6}{5}z. \]

Therefore, for all \(x, y, z \in M \) we have
\[G(Tx, Ty, Tz) = |Tx - Ty| + |Ty - Tz| + |Tz - Tx| = \frac{6}{5}
\]
\[\frac{2}{5}x - \frac{2}{5}y \]
\[\frac{2}{5}y - \frac{2}{5}z \]
\[\frac{2}{5}z - \frac{2}{5}x \]
\[= \frac{2}{5} (|x - y| + |y - z| + |z - x|) \]
\[\leq \frac{7}{15} (|x - y| + |y - z| + |z - x|) \]
\[\leq \frac{7}{15} \max \left\{ \frac{6}{5} |x|, \frac{6}{5} |y|, \frac{6}{5} |z| \right\} \]
\[= k. \max \{ G(x, T x, T x), G(y, T y, T y), G(z, T z, T z) \} \]

where \(0 \leq k = \frac{7}{15} < \frac{1}{2} \). This proves that the condition \((B_1)\) in Theorem 2.4 is satisfied.

By choosing \(x = \frac{1}{2} \in X \) we have the sequence \(\left\{ T^n \left(\frac{1}{2} \right) \right\} = \left\{ \frac{1}{2} \left(\frac{2}{3} \right)^n \right\} \) is G-convergent to \(0 \in X \). This proves that \(T \) satisfies the condition \((B_2)\) in Theorem 2.4.

Therefore, all assumptions of Theorem 2.4 are satisfied. Then Theorem 2.4 is applicable to \(T \). We see that \(x = 0 \) is the unique fixed point of \(T \).

Now we prove that \(T \) does not satisfy the condition (1) in Theorem 1.3. For all \(x, y, z \in M \), we may assume that \(x \geq y \geq z \). Then we have
\[
(2.16) \quad G(Tx, Ty, Tz) = |Tx - Ty| + |Ty - Tz| + |Tz - Tx| = \frac{2}{5}x - \frac{2}{5}y + \frac{2}{5}y - \frac{2}{5}z + \frac{2}{5}z - \frac{2}{5}x = \frac{2}{5}(x - y + y - z - z + x) = \frac{4}{5}(x - z).
\]

and
\[
(2.17) \quad \max \{ G(x, Tx, Tx), G(y, Ty, Ty), G(z, Tz, Tz) \} = \max \left\{ \frac{6}{5}x, \frac{6}{5}y, \frac{6}{5}z \right\} = \frac{6}{5}x.
\]
Two fixed point theorems for maps on incomplete G-metric spaces

Suppose to the contrary that T satisfies the condition (1) in Theorem 1.3. Then we have

$$G(Tx, Ty, Tz) \leq k \{ G(x, Tx, Tx) + G(y, Ty, Ty) + G(z, Tz, Tz) \}$$

for all $x, y, z \in M$ and $0 < k < \frac{1}{6}$. Combining (2.16) and (2.17) to give

$$\frac{4}{5}(x - z) \leq 3k\frac{6}{5}x$$

which is equivalent to $2x - 2z \leq 9k.x$. By choosing $x > y > z = \frac{1}{4}x$ we get $k \geq \frac{1}{6}$. It is a contradiction. Therefore, Theorem 1.3 is not applicable to T.

REFERENCES

5. Z. Mustafa, H. Obiedat, and F. Awawdeh, Some fixed point theorem for mapping on complete G-metric spaces, Fixed Point Theory Appl. 2008 (2008), 1 - 12.

Received: February 14, 2013