On the Inclined Curves in Galilean 4-Space

Dae Won Yoon

Department of Mathematics Education and RINS
Gyeongsang National University, Jinju 660-701, South Korea
dwyoon@gnu.ac.kr

Copyright © 2013 Dae Won Yoon. This is an open access article distributed under the
Creative Commons Attribution License, which permits unrestricted use, distribution, and
reproduction in any medium, provided the original work is properly cited.

Abstract

In this paper, we give some characterizations for an inclined curve by
means of curvatures of a curve in a 4-dimensional Galilean space.

Mathematics Subject Classification: 53A04

Keywords: Galilean space, Inclined curve, Curvature, Frenet formula

1 Introduction

In Euclidean 3-space R^3 a inclined curve or general helix is a curve where the
tangent lines make a constant angle with a fixed direction. A inclined curve is
characterized by the fact that the ratio τ/κ is constant along the curve, where
κ and τ denote the curvature and the torsion, respectively. In Minkowski 3-
space R^3_1 and Galilean 3-space G^3, one defines a inclined curve in R^3_1 and G^3
by a similar way. Although different expansions of the Frenet formula appear
depending on the form of the Frenet vectors, in many cases, a inclined curve is
characterized by the constancy of the function τ/κ again ([2],[5]) Recently, the
study of a inclined curve in 4-dimensional space R^4, R^4_1 and Q^4, quaternionic
space, examined by [3], [4, 6] and [8], respectively.

In this paper, we investigate the properties of a inclined curve in terms of
the curvatures of a curve in Galilean 4-space G^4.
2 Preliminary Notes

Let \(\alpha : I \subset R \to G^4 \) be an arbitrary curve in a 4-dimensional Galilean space \(G^4 \) defined by
\[
\alpha(t) = (x(t), y(t), z(t), w(t)),
\]
where \(x(t), y(t), z(t), w(t) \) are smooth functions.

For any vectors \(\mathbf{x} = (x_1, y_1, z_1, w_1) \) and \(\mathbf{y} = (x_2, y_2, z_2, w_2) \) in Galilean space \(G^4 \) the Galilean norm of a vector \(\mathbf{x} \) is defined by
\[
||\mathbf{x}|| = \begin{cases} x_1, & \text{if } x_1 \neq 0 \\ \sqrt{y_1^2 + z_1^2 + w_1^2}, & \text{if } x_1 = 0. \end{cases}
\]

From this, the Galilean cross product on \(G^4 \) be the standard basis vectors.

On the other hand, a curve \(\alpha \) in \(G^4 \), parameterized by arc-length \(t = s \), given in coordinate form
\[
\alpha(s) = (s, y(s), z(s), w(s)).
\]

It follows that the tangent vector of \(\alpha \) is given by
\[
\mathbf{t} = \alpha'(s) = (1, y'(s), z'(s), w'(s)).
\]

From this we obtain the first curvature \(k_1 \) as follows:
\[
k_1(s) = ||\mathbf{t}'(s)|| = \sqrt{(y''(s))^2 + (z''(s))^2 + (w''(s))^2}.
\]

By the similar arguments as those of in the Euclidean differential geometry, we have the following the Frenet vectors \(\{\mathbf{t}, \mathbf{n}_1, \mathbf{n}_2, \mathbf{n}_3\} \) of \(\alpha(s) \) in \(G_4 \):
\[
\begin{align*}
\mathbf{t}(s) &= (1, y'(s), z'(s), w'(s)), \\
\mathbf{n}_1(s) &= \frac{1}{k_1(s)}(0, y''(s), z''(s), w''(s)), \\
\mathbf{n}_2(s) &= \frac{1}{k_2(s)} \left(0, \left(\frac{1}{k_1(s)} y''(s) \right)', \left(\frac{1}{k_1(s)} z''(s) \right)', \left(\frac{1}{k_1(s)} w''(s) \right)' \right), \\
\mathbf{n}_3(s) &= \varepsilon \mathbf{t} \wedge \mathbf{n}_1 \wedge \mathbf{n}_2,
\end{align*}
\]
where \(\varepsilon \) is taken \(\pm 1 \) to make \(+1 \) the determinant \(|\mathbf{t}n_1n_2n_3| \) and \(k_2(s) = ||\mathbf{n}_1'(s)|| \), it is called the second curvature of \(\alpha(s) \).

For their derivatives the following Frenet formula satisfies ([cf. 7])

\[
\begin{align*}
\mathbf{t}'(s) &= k_1(s)\mathbf{n}_1(s), \\
\mathbf{n}_1'(s) &= k_2(s)\mathbf{n}_2(s), \\
\mathbf{n}_2'(s) &= -k_2(s)\mathbf{n}_1(s) + k_3(s)\mathbf{n}_3(s), \\
\mathbf{n}_3'(s) &= -k_3(s)\mathbf{n}_2(s).
\end{align*}
\]

(2)

Here \(k_3 = \langle \mathbf{n}_2', \mathbf{n}_3 \rangle \), it said to be the third curvature of \(\alpha(s) \).

3 Characterizations of inclined curves in \(G^4 \)

Theorem 3.1 Let \(\alpha = \alpha(s) \) be a unit speed curve in \(G^4 \) with non-zero curvatures \(k_1(s), k_2(s) \) and \(k_3(s) \). Then \(\alpha \) is a inclined curve in \(G^4 \) if and only if the function

\[
\left(\frac{k_1}{k_2} \right)^2 + \frac{1}{k_3^2} \left(\left(\frac{k_1}{k_2} \right)' \right)^2 = \text{constant}.
\]

(3)

Proof. Let \(\alpha(s) \) be a inclined curve in \(G^4 \) and the axis of the curve \(\alpha(s) \) be the unit vector \(\mathbf{u} \). Then, we have

\[
\langle \mathbf{t}, \mathbf{u} \rangle = \text{constant}
\]

(4)

along the curve \(\alpha \). By differentiating (4) with respect to \(s \) and using the Frenet formula (2) we have \(\langle k_1\mathbf{n}_1, \mathbf{u} \rangle = 0 \), which implies that the unit vector \(\mathbf{u} \) is in the subspace \(\text{span}\{\mathbf{t}, \mathbf{n}_2, \mathbf{n}_3\} \) and can be written as follows

\[
\mathbf{u} = a_1(s)\mathbf{t}(s) + a_2(s)\mathbf{n}_2(s) + a_3(s)\mathbf{n}_3(s),
\]

(5)

where

\[
a_1(s) = \langle \mathbf{t}, \mathbf{u} \rangle = \text{constant}, \quad a_2(s) = \langle \mathbf{n}_2, \mathbf{u} \rangle, \quad a_3(s) = \langle \mathbf{n}_3, \mathbf{u} \rangle, \quad a_1^2 + a_2^2 + a_3^2 = 1.
\]

The differentiation of (5) gives

\[
(a_1k_1 - a_2k_2)\mathbf{n}_1 + (a_2' - a_3k_3)\mathbf{n}_2 + (a_3' + a_2k_3)\mathbf{n}_3 = 0.
\]

Since the vectors \(\mathbf{n}_1, \mathbf{n}_2, \mathbf{n}_3 \) are linearly independent, we yield

\[
a_1k_1 - a_2k_2 = 0, \quad a_2' - a_3k_3 = 0, \quad a_3' + a_2k_3 = 0,
\]

that is,

\[
a_2 = \frac{k_1}{k_2}a_1 = -\frac{1}{k_3}a_3', \quad a_2' = a_3k_3.
\]

(6)
Therefore, from (6) we have the ODE for \(a_3 \) as follows
\[
a'_3 - \frac{k_1'}{k_3} a'_3 + k_3^2 a_3 = 0. \tag{7}
\]
If we change variables in (7) as \(t = \int_0^s k_3 ds \), then (7) becomes
\[
\frac{d^2 a_3}{dt^2} + a_3 = 0. \tag{8}
\]
Solving this differential equation, we get the solution
\[
a_3 = A \cos t(s) + B \sin t(s), \tag{9}
\]
for some constants \(A \) and \(B \). From the first equation of (6) and (9) we find

\[
a_2 = \frac{k_1 a_1}{k_2} = A \sin t(s) - B \cos t(s), \quad a_3 = \frac{1}{k_3} \left(\frac{k_1}{k_2} \right)' a_1 = A \cos t(s) + B \sin t(s).
\]

From the above equations we obtain
\[
A = a_1 \left(\frac{k_1}{k_2} \sin t(s) + \frac{1}{k_3} \left(\frac{k_1}{k_2} \right)' \cos t(s) \right),
\]
\[
B = a_1 \left(\frac{1}{k_3} \left(\frac{k_1}{k_2} \right)' \sin t(s) - \frac{k_1}{k_2} \cos t(s) \right),
\]
which imply
\[
A^2 + B^2 = a_1^2 \left(\left(\frac{k_1}{k_2} \right)^2 + \frac{1}{k_3^2} \left(\left(\frac{k_1}{k_2} \right)' \right)^2 \right).
\]
Thus, we have
\[
\left(\frac{k_1}{k_2} \right)^2 + \frac{1}{k_3^2} \left(\left(\frac{k_1}{k_2} \right)' \right)^2 = \text{constant}. \tag{10}
\]

Conversely, if (4) holds, then we can always find a constant unit vector \(u \) satisfying \(\langle t, u \rangle = \text{constant} \). We consider the unit vector defined by
\[
u = t + \frac{k_1}{k_2} n_2 + \frac{1}{k_3} \left(\frac{k_1}{k_2} \right)' n_3.
\]
Differentiation of \(u \) with the help of (10) gives \(u' = 0 \), this mean that \(u \) is a constant vector. Consequently, the curve \(\alpha(s) \) is a inclined curve in \(G^4 \).

Theorem 3.2 A unit speed curve \(\alpha(s) \) in \(G^4 \) is a inclined curve if and only if there exists a \(C^2 \)-function \(f \) such that
\[
k_3 f(s) = \frac{d}{ds} \left(\frac{k_1}{k_2} \right), \quad \frac{d}{ds} f(s) = -k_3 \left(\frac{k_1}{k_2} \right). \tag{11}
\]
Proof. We assume that γ is a inclined curve. Differentiation of (10) gives
\[
\left(\frac{k_1}{k_2} \right) \left(\frac{k_1}{k_2} \right)' + \frac{1}{k_3} \left(\frac{k_1}{k_2} \right)'' \left(-\frac{k_3'}{k_3^2} + \frac{1}{k_3} \left(\frac{k_1}{k_2} \right)'' \right) = 0,
\]
or equivalently,
\[
\left(\frac{k_1}{k_2} \right) \frac{d}{ds} \left(\frac{k_1}{k_2} \right) + \frac{1}{k_3} \frac{d}{ds} \left(\frac{k_1}{k_2} \right) \frac{d}{ds} \left(\frac{1}{k_3} \frac{d}{ds} \left(\frac{k_1}{k_2} \right) \right) = 0. \tag{12}
\]
Therefore, we have
\[
\frac{1}{k_3} \frac{d}{ds} \left(\frac{k_1}{k_2} \right) = -\frac{\left(\frac{k_1}{k_2} \right) \frac{d}{ds} \left(\frac{k_1}{k_2} \right)}{\frac{d}{ds} \left(\frac{1}{k_3} \frac{d}{ds} \left(\frac{k_1}{k_2} \right) \right)}. \tag{13}
\]
If we define $f = f(s)$ by
\[
f(s) = -\frac{\left(\frac{k_1}{k_2} \right) \frac{d}{ds} \left(\frac{k_1}{k_2} \right)}{\frac{d}{ds} \left(\frac{1}{k_3} \frac{d}{ds} \left(\frac{k_1}{k_2} \right) \right)},
\]
then (13) becomes
\[
k_3 f(s) = \frac{d}{ds} \left(\frac{k_1}{k_2} \right). \tag{14}
\]
From (13) it can be written
\[
\frac{d}{ds} \left(\frac{1}{k_3} \frac{d}{ds} \left(\frac{k_1}{k_2} \right) \right) = -k_3 \left(\frac{k_1}{k_2} \right) \tag{15}
\]
By combining (14) and (15), we find
\[
\frac{d}{ds} f(s) = -k_3 \left(\frac{k_1}{k_2} \right). \tag{16}
\]

Conversely, if (11) holds, we define a unit constant vector u by
\[
u = t + \frac{k_1}{k_2} n_2 + f(s) n_3.
\]
It follows $\langle t, u \rangle = 1$. Thus, α is a inclined curve.

Theorem 3.3 Let α be a unit speed curve in G^4. Then α is a inclined curve if and only if the following condition holds;
\[
\frac{k_1}{k_2} = C_1 \cos t + C_2 \sin t, \tag{17}
\]
where C_1, C_2 are constants and $t(s) = \int_0^s k_3 ds$.

Proof. Suppose that α is a inclined curve. By using Theorem 3.1, let define the C^2-function $t(s)$ and the C^1-functions $m(s)$ and $n(s)$ by

$$t(s) = \int_0^s k_3 ds,$$

$$m(s) = \frac{k_1}{k_2} \cos t - f(s) \sin t,$$

$$n(s) = \frac{k_1}{k_2} \sin t + f(s) \cos t. \quad (19)$$

If we differentiate equation (19) with respect to s and take account of (18), (14) and (16), we have $m' = 0$ and $n' = 0$. Therefore, $m = C_1$ and $n = C_2$ are constants. Thus, from (19) we obtain

$$\frac{k_1}{k_2} = C_1 \cos t + C_2 \sin t.$$

Conversely, if the equation (17) holds. Then from (19) we have

$$f = -C_1 \cos t + C_2 \sin t,$$

it satisfies the condition of Theorem 3.3. Thus, α is a inclined curve in G^4.

References

Received: February 15, 2013