An Identity of the Twisted \((h, q)\)-Euler Polynomials
-associated with the \(p\)-adic \(q\)-Integrals on \(\mathbb{Z}_p\)

C. S. Ryoo

Department of Mathematics
Hannam University, Daejeon 306-791, Korea

Copyright © 2013 C. S. Ryoo. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Abstract

In this paper, we investigate the alternating sums of powers of consecutive integers. By applying the symmetry of the fermionic \(p\)-adic \(q\)-integral on \(\mathbb{Z}_p\), we give recurrence identities the twisted \((h, q)\)-Euler polynomials.

Mathematics Subject Classification: 11B68, 11S40, 11S80

Keywords: Euler numbers and polynomials, \(q\)-Euler numbers and polynomials, \((h, q)\)-Euler numbers and polynomials, alternating sums, twisted \((h, q)\)-Euler polynomials.

1 Introduction

Throughout this paper, we always make use of the following notations: \(\mathbb{C}\) denotes the set of complex numbers, \(\mathbb{Z}_p\) denotes the ring of \(p\)-adic rational integers, \(\mathbb{Q}_p\) denotes the field of \(p\)-adic rational numbers, and \(\mathbb{C}_p\) denotes the completion of algebraic closure of \(\mathbb{Q}_p\). Let \(\nu_p\) be the normalized exponential valuation of \(\mathbb{C}_p\) with \(|p|_p = p^{-\nu_p(p)} = p^{-1}\). When one talks of \(q\)-extension, \(q\) is considered in many ways such as an indeterminate, a complex number \(q \in \mathbb{C}\), or \(p\)-adic number \(q \in \mathbb{C}_p\). If \(q \in \mathbb{C}\) one normally assume that \(|q| < 1\). If \(q \in \mathbb{C}_p\), we normally assume that \(|q - 1|_p < p^{-\frac{1}{p-1}}\) so that \(q^x = \exp(x \log_q)\) for \(|x|_p \leq 1\). Throughout this paper we use the notation:

\[
[x]_q = \frac{1 - q^x}{1 - q}, \quad [x]_{-q} = \frac{1 - (-q)^x}{1 + q}.
\]
Hence, \(\lim_{q \to 1} [x] = x\) for any \(x\) with \(|x|_p \leq 1\) in the present \(p\)-adic case. For
\[g \in UD(\mathbb{Z}_p) = \{g | g : \mathbb{Z}_p \to \mathbb{C}_p \text{ is uniformly differentiable function}\},\]
the \(p\)-adic \(q\)-integral was defined by
\[
I_{-q}(g) = \int_{\mathbb{Z}_p} g(x) d\mu_{-q}(x) = \lim_{N \to \infty} \frac{[2]_q}{1 + q^{pN}} \sum_{x=0}^{pN-1} g(x)(-q)^x, \quad \text{see [1-8]}. \quad (1.1)
\]
If we take \(g_1(x) = g(x+1)\) in (1.1), then we easily see that
\[
qI_{-q}(g_1) + I_{-q}(g) = [2]_q g(0). \quad (1.2)
\]
Let \(T_p = \bigcup_{N \geq 1} C_{pN} = \lim_{N \to \infty} C_{pN}\), where \(C_{pN} = \{\zeta | \zeta^{pN} = 1\}\) is the cyclic group of order \(p^N\). For \(\zeta \in T_p\), we denote by \(\phi_{\zeta} : \mathbb{Z}_p \to \mathbb{C}_p\) the locally constant function \(x \mapsto \zeta^x\).

For \(h \in \mathbb{Z}, q \in \mathbb{C}_p\) with \(|1 - q|_p \leq 1\), and \(\zeta \in T_p\), the twisted \((h, q)\)-Euler polynomials \(\widetilde{E}^{(h)}_{n,q,\zeta}(x)\) are defined by
\[
\widetilde{F}^{(h)}_{q,\zeta}(x, t) = \sum_{n=0}^{\infty} \frac{\widetilde{E}^{(h)}_{n,q,\zeta}(x) t^n}{n!} = \frac{[2]_q}{\zeta q^h e^t + 1} e^{xt}. \quad (1.3)
\]
The twisted \((h, q)\)-Euler numbers \(\widetilde{E}^{(h)}_{n,q,\zeta}\) are defined by the generating function:
\[
\widetilde{F}^{(h)}_{q,\zeta}(t) = \sum_{n=0}^{\infty} \frac{\widetilde{E}^{(h)}_{n,q,\zeta} t^n}{n!} = \frac{[2]_q}{\zeta q^h e^t + 1}. \quad (1.4)
\]
The following elementary properties of the \((h, q)\)-Euler numbers \(\widetilde{E}^{(h)}_{n,q,\zeta}\) and polynomials \(\widetilde{E}^{(h)}_{n,q,\zeta}(x)\) are readily derived from (1.1), (1.2), (1.3) and (1.4).

Theorem 1.1 (Witt formula). For \(h \in \mathbb{Z}, q \in \mathbb{C}_p\) with \(|1 - q|_p < 1\), and \(\zeta \in T_p\), we have
\[
\widetilde{E}^{(h)}_{n,q,\zeta}(x) = \int_{\mathbb{Z}_p} \zeta^x q^{(h-1)x} x^n d\mu_{-q}(x),
\]
\[
\widetilde{E}^{(h)}_{n,q,\zeta}(x) = \int_{\mathbb{Z}_p} \zeta^y q^{(h-1)y} (x + y)^n d\mu_{-q}(y).
\]

Theorem 1.2 For any positive integer \(n\), we have
\[
\widetilde{E}^{(h)}_{n,q,\zeta}(x) = \sum_{k=0}^{n} \binom{n}{k} \widetilde{E}^{(h)}_{k,q,\zeta} x^{n-k}.
\]
2 The alternating sums of powers of consecutive q-integers

Let q be a complex number with $|q| < 1$ and ζ be the p^N-th root of unity. By using (1.3), we give the alternating sums of powers of consecutive (h, q)-integers as follows:

$$\sum_{n=0}^{\infty} \bar{E}_{n,q,\zeta}^{(h)} \frac{t^n}{n!} = \frac{[2]_q}{\zeta q^h e^t + 1} = [2]_q \sum_{n=0}^{\infty} (-1)^n \zeta^n q^{hn} e^{nt}.$$

From the above, we have

$$- [2]_q \sum_{n=0}^{\infty} (-1)^n \zeta^n q^{hn} e^{(n+k)t} + [2]_q (-1)^{-k} \zeta^{-k} q^{-hk} \sum_{n=0}^{\infty} (-1)^n \zeta^n q^{hn} e^{nt}$$

$$= [2]_q (-1)^{-k} \zeta^{-k} q^{-hk} \sum_{n=0}^{k-1} (-1)^n \zeta^n q^{hn} e^{nt}.$$ (2.1)

By using (1.3) and (1.4), and (2.1), we obtain

$$\sum_{n=0}^{k-1} (-1)^n \zeta^n q^{hn} n^j = \frac{(-1)^{k+1} \zeta^k q^{hk} \bar{E}_{j,q,\zeta}^{(h)}(k) + \bar{E}_{j,q,\zeta}^{(h)}}{[2]_q}.$$

By using the above equation we arrive at the following theorem:

Theorem 2.1 Let k be a positive integer and $q \in \mathbb{C}$ with $|q| < 1$. Then we obtain

$$\tilde{T}_{j,q,\zeta}^{(h)}(k-1) = \sum_{n=0}^{k-1} (-1)^n \zeta^n q^{hn} n^j = \frac{(-1)^{k+1} \zeta^k q^{hk} \bar{E}_{j,q,\zeta}^{(h)}(k) + \bar{E}_{j,q,\zeta}^{(h)}}{[2]_q}.$$

Corollary 2.2 For $\zeta = 1$, we have

$$\lim_{q \to 1} \tilde{T}_{j,q,\zeta}^{(h)}(k-1) = \sum_{n=0}^{k-1} (-1)^n n^j = \frac{(-1)^{k+1} E_j(k) + E_j}{2},$$

where $E_j(x)$ and E_j denote the Euler polynomials and Euler numbers, respectively.

Next, we assume that $q \in \mathbb{C}_p$ and $\zeta \in T_p$. We obtain recurrence identities the (h, q)-Euler polynomials and the q-analogue of alternating sums of powers of consecutive integers. By using (1.1), we have

$$q^n I_{-q}(g_n) + (-1)^{n-1} I_{-q}(g) = [2]_q \sum_{l=0}^{n-1} (-1)^{n-1-l} q^l g(l),$$
where \(g_n(x) = g(x + n) \). If \(n \) is odd from the above, we obtain

\[
q^n I_q(g_n) + I_q(g) = [2]q \sum_{l=0}^{n-1} (-1)^{n-l-1} q^l g(l) \quad (\text{cf. [1-5]}).
\]

(2.2)

Substituting \(g(x) = \zeta x q^{(h-1)x} e^{xt} \) into the above, we have

\[
\zeta^n q^{hn} \int_{\mathbb{Z}_p} \zeta x q^{(h-1)x} e^{(x+n)t} d\mu_q(x) + \int_{\mathbb{Z}_p} \zeta x q^{(h-1)x} e^{xt} d\mu_q(x) = \frac{[2]q(1 + \zeta^n q^{hn} e^{nt})}{\zeta q^h e^t + 1}.
\]

From the above, we get

\[
\frac{[2]q(1 + \zeta^n q^{hn} e^{nt})}{\zeta q^h e^t + 1} = \frac{2 \int_{\mathbb{Z}_p} \zeta x q^{(h-1)x} e^{xt} d\mu_q(x)}{\int_{\mathbb{Z}_p} \zeta x q^{hn} e^{nt} d\mu_{-1}(x)}.
\]

(2.3)

By substituting Taylor series of \(e^{xt} \), we obtain

\[
\sum_{m=0}^{\infty} \left(\zeta^n q^{hn} \int_{\mathbb{Z}_p} \zeta x q^{(h-1)x} (x+n)^m d\mu_q(x) + \int_{\mathbb{Z}_p} \zeta x q^{(h-1)x} x^m d\mu_q(x) \right) \frac{t^m}{m!} = \sum_{m=0}^{\infty} \left([2]q \sum_{j=0}^{n-1} (-1)^j \zeta^j q^{hj} j^m \right) \frac{t^m}{m!}.
\]

(2.4)

By using Theorem 2.1 and (2.4), we have

\[
\zeta^n q^{hn} \sum_{k=0}^{m} \binom{m}{k} n^{m-k} \int_{\mathbb{Z}_p} \zeta x q^{(h-1)x} x^k d\mu_q(x) + \int_{\mathbb{Z}_p} \zeta x q^{(h-1)x} x^m d\mu_q(x) = [2]q T_{m,q,\zeta}(n - 1).
\]

(2.5)

By using (2.3) and (2.5), we arrive at the following theorem:

Theorem 2.3 Let \(n \) be odd positive integer and \(h \in \mathbb{Z} \). Then we have

\[
\frac{2 \int_{\mathbb{Z}_p} \zeta x q^{(h-1)x} e^{xt} d\mu_q(x)}{\int_{\mathbb{Z}_p} \zeta x q^{hn} e^{nt} d\mu_{-1}(x)} = [2]q \sum_{m=0}^{\infty} \left(T_{m,q,\zeta}(n - 1) \right) \frac{t^m}{m!}.
\]

Let \(w_1 \) and \(w_2 \) be odd positive integers. By Theorem 2.3, and after some elementary calculations, we obtain the following theorem.

Theorem 2.4 Let \(w_1 \) and \(w_2 \) be odd positive integers. Then we have

\[
\frac{2 \int_{\mathbb{Z}_p} \zeta^{w_1} q^{(w_2-1)x} e^{w_1 x_2} d\mu_q(x_2)}{\int_{\mathbb{Z}_p} \zeta^{w_1} q^{w_2} e^{w_1 x_2} d\mu_{-1}(x)} = [2]q \sum_{m=0}^{\infty} \left(T_{m,q,\zeta}(w_1 - 1)w_2 \right) \frac{t^m}{m!}.
\]

(2.6)
By (1.1), we obtain
\[
\int_{\mathbb{Z}} \int_{\mathbb{Z}} \zeta^{w_1 x_1 + w_2 x_2} q^{(w_1 - 1) x_1} q^{(w_2 - 1) x_2} e^{(w_1 x_1 + w_2 x_2 + w_1 x_2) t} d\mu_{-q}(x_1) d\mu_{-q}(x_2)
\]
\[
= e^{w_1 x_2 t} \int_{\mathbb{Z}} \zeta^{w_1 x_1} q^{(w_1 - 1) x_1} e^{w_1 x_1 t} d\mu_{-q}(x_1) \int_{\mathbb{Z}} \zeta^{w_2 x_2} q^{(w_2 - 1) x_2} e^{w_2 x_2 t} d\mu_{-q}(x_2)
\]
\[
= \frac{e^{w_1 x_2 t}}{\int_{\mathbb{Z}} \zeta^{w_1 x_1} q^{(w_1 - 1) x_1} e^{w_1 x_1 t} d\mu_{-1}(x)} \int_{\mathbb{Z}} \zeta^{w_2 x_2} q^{(w_2 - 1) x_2} e^{w_2 x_2 t} d\mu_{-1}(x).
\] \tag{2.7}

By using (2.6) and (2.7), after elementary calculations, we obtain
\[
a = \frac{[2]_q}{2} \left(\sum_{m=0}^{\infty} \tilde{E}_{m,q,\zeta}^{(w_1)}(w_2 x) w_1^m \frac{t^m}{m!} \right) \left(\sum_{m=0}^{\infty} \tilde{T}_{m,q,\zeta}^{(w_2)}(w_1 - 1) w_2^m \frac{t^m}{m!} \right). \tag{2.8}
\]

By using Cauchy product in the above, we have
\[
a = \frac{[2]_q}{2} \sum_{m=0}^{\infty} \left(\sum_{j=0}^{m} \binom{m}{j} \tilde{E}_{j,q,\zeta}^{(w_1)}(w_2 x) w_2^j \tilde{T}_{m-j,q,\zeta}^{(w_2)}(w_1 - 1) w_1^{m-j} \right) \frac{t^m}{m!}. \tag{2.9}
\]

By using the symmetry in (2.8), we obtain
\[
a = \frac{[2]_q}{2} \left(\sum_{m=0}^{\infty} \tilde{E}_{m,q,\zeta}^{(w_2)}(w_1 x) w_1^m \frac{t^m}{m!} \right) \left(\sum_{m=0}^{\infty} \tilde{T}_{m,q,\zeta}^{(w_1)}(w_2 - 1) w_2^m \frac{t^m}{m!} \right).
\]

Thus we obtain
\[
a = \frac{[2]_q}{2} \sum_{m=0}^{\infty} \left(\sum_{j=0}^{m} \binom{m}{j} \tilde{E}_{j,q,\zeta}^{(w_2)}(w_1 x) w_1^j \tilde{T}_{m-j,q,\zeta}^{(w_1)}(w_2 - 1) w_2^{m-j} \right) \frac{t^m}{m!}. \tag{2.10}
\]

By comparing coefficients \(\frac{t^m}{m!} \) in the both sides of (2.9) and (2.10), we arrive at the following theorem.

Theorem 2.5 Let \(w_1 \) and \(w_2 \) be odd positive integers. Then we obtain
\[
\sum_{j=0}^{m} \binom{m}{j} \tilde{E}_{j,q,\zeta}^{(w_1)}(w_2 x) w_1^j \tilde{T}_{m-j,q,\zeta}^{(w_2)}(w_1 - 1) w_2^{m-j}
\]
\[
= \sum_{j=0}^{m} \binom{m}{j} \tilde{E}_{j,q,\zeta}^{(w_2)}(w_1 x) w_2^j \tilde{T}_{m-j,q,\zeta}^{(w_1)}(w_2 - 1) w_1^{m-j},
\]

where \(\tilde{E}_{k,q,\zeta}^{(h)}(x) \) and \(\tilde{T}_{m,q,\zeta}^{(h)}(k) \) denote the twisted \((h,q)\)-Euler polynomials and the \(q \)-analogue of alternating sums of powers of consecutive integers, respectively.
By using Theorem 1.2, we have the following corollary:

Corollary 2.6 Let \(w_1 \) and \(w_2 \) be odd positive integers. Then we obtain

\[
\sum_{j=0}^{m} \sum_{k=0}^{j} \binom{m}{j} \binom{j}{k} w_1^{m-k} w_2^j x^j \bar{E}_{k,q,\xi}^{(w_2)} \bar{T}_{m-j,q,\xi}^{(w_1)} (w_2 - 1)
= \sum_{j=0}^{m} \sum_{k=0}^{j} \binom{m}{j} \binom{j}{k} w_1^j w_2^{m-k} x^j \bar{E}_{k,q,\xi}^{(w_1)} \bar{T}_{m-j,q,\xi}^{(w_2)} (w_1 - 1).
\]

By using (2.9), we have

\[
a = \left(\frac{1}{2} e^{w_1 w_2 x t} \int_{\mathbb{Z}_p} \zeta^{w_1 x_1} q^{(w_1-1)x_1} e^{x_1 w_1 t} d\mu_q(x_1) \right) \left(\frac{2 \int_{\mathbb{Z}_p} \zeta^{w_2 x_2} q^{(w_2-1)x_2} e^{x_2 w_2 t} d\mu_q(x_2)}{\int_{\mathbb{Z}_p} \zeta^{w_1 w_2 x q w_1 w_2 x} e^{x w_1 w_2 t} d\mu_q(x)} \right)
= \frac{[q]}{2} \sum_{j=0}^{w_1-1} (-1)^j \zeta^{w_1 j} q^{w_1 j} \int_{\mathbb{Z}_p} \zeta^{w_1 x_1} q^{(w_1-1)x_1} e^{x_1 w_1 t} \left(\frac{w_2}{w_1} \right)^{(w_2 t)} d\mu_q(x_1)
= \frac{[q]}{2} \sum_{n=0}^{\infty} \left(\frac{w_1-1}{w_1} \right) \frac{n!}{n!}.
\]

By using the symmetry property in (2.11), we also have

\[
a = \left(\frac{1}{2} e^{w_1 w_2 x t} \int_{\mathbb{Z}_p} \zeta^{w_2 x_2} q^{(w_2-1)x_2} e^{x_2 w_2 t} d\mu_q(x_2) \right) \left(\frac{2 \int_{\mathbb{Z}_p} \zeta^{w_1 x_1} q^{(w_1-1)x_1} e^{x_1 w_1 t} d\mu_q(x_1)}{\int_{\mathbb{Z}_p} \zeta^{w_1 w_2 x q w_1 w_2 x} e^{x w_1 w_2 t} d\mu_q(x)} \right)
= \frac{[q]}{2} \sum_{j=0}^{w_2-1} (-1)^j \zeta^{w_2 j} q^{w_2 j} \int_{\mathbb{Z}_p} \zeta^{w_2 x_2} q^{(w_2-1)x_2} e^{x_2 w_2 t} \left(\frac{w_1}{w_2} \right)^{(w_1 t)} d\mu_q(x_2)
= \frac{[q]}{2} \sum_{n=0}^{\infty} \left(\frac{w_2-1}{w_2} \right) \frac{n!}{n!}.
\]

By comparing coefficients \(\frac{t^n}{n!} \) in the both sides of (2.11) and (2.12), we have the following theorem:

Theorem 2.7 Let \(w_1 \) and \(w_2 \) be odd positive integers. Then we have

\[
\sum_{j=0}^{w_1-1} (-1)^j \zeta^{w_2 j} q^{w_2 j} \tilde{E}_{n,q,\xi}^{(w_1)} \left(w_2 x + j \frac{w_2}{w_1} \right) w_1^n
= \sum_{j=0}^{w_2-1} (-1)^j \zeta^{w_1 j} q^{w_1 j} \tilde{E}_{n,q,\xi}^{(w_2)} \left(w_1 x + j \frac{w_1}{w_2} \right) w_2^n.
\]
Corollary 2.8 Let w_1 and w_2 be odd positive integers. If $q \to 1$ and $\zeta = 1$, we have
\[\sum_{j=0}^{w_1-1} (-1)^j E_n \left(w_2 x + j \frac{w_2}{w_1} \right) w_1^n = \sum_{j=0}^{w_2-1} (-1)^j E_n \left(w_1 x + j \frac{w_1}{w_2} \right) w_2^n. \]

Substituting $w_1 = 1$ into (2.13), we arrive at the following corollary.

Corollary 2.9 Let w_2 be odd positive integer. Then we obtain
\[\tilde{E}_{n,q,\zeta}(x) = \sum_{j=0}^{w_2-1} (-1)^j \zeta^j q^j \tilde{E}_{n,q,\zeta}(w_2) \left(\frac{x + j}{w_2} \right) w_2^n, \]
where $\tilde{E}_{n,q,\zeta}(x)$ denotes the twisted q-Euler polynomials (see [6], [7]).

References

Received: January, 2013