EBPA: An Efficient Data Structure for Frequent Closed Itemset Mining

Chakarin Vajiramedhin
Department of Computer Science, Faculty of Science
King Mongkut’s Institute of Technology
Ladkrabang, Bangkok, 10520, Thailand
chakarin@live.com

Jeeraporn Werapun
Department of Computer Science, Faculty of Science
King Mongkut’s Institute of Technology
Ladkrabang, Bangkok, 10520, Thailand
ksjeerap@kmitl.ac.th

Abstract

In closed itemset mining, the process of mining from a large transaction database directly often leads to inefficient space and time. Practically, many data structures were proposed to maintain valuable data for frequent closed itemset mining (FCIM), while each data structure has its own advantages and disadvantages. In recent study, a collaboration of array, bitmap, and prefix tree was proposed to gain advantages of those basic data structures by reducing the computing time of the FCIM. That collaboration can save space over that of the original prefix tree, which requires extra space for \((m-1)\) parent-child pointers and its corresponding hashing table (in each tree-node). However, the extra sorting all transactions and merging repeated transactions are required before constructing the prefix tree. Therefore, this paper presents the improved collaboration data structure, called the EBPA (Efficient Bitmap-Prefix-tree Array), with the efficient (parent-child) access in \(O(1)\) by using a (temporary) pointer array (without space for hashing) and not require the extra sorting transactions. In system performance evaluation, experimental results showed that the response time of our EBPA-based FCIM mining outperforms over that of the existing collaboration-based FCIM approach.
Keywords: data mining, closed itemset mining, bitmap-prefix-tree array data structure

1 Introduction

Frequent Closed Itemset Mining (FCIM) is the main important technique in several data mining applications (e.g., classifiers, association rules, etc.), for representing useful extracting patterns (or itemsets) from all of very large candidate patterns within a transaction database for solving the problem of a frequent itemset mining (FIM). The FIM approaches are possible to create an exponential number of output patterns, especially in case of the minimum support threshold is set to low value, while the transaction database is very large. Later research focuses on the complete closed itemsets, which can reduce a number of itemsets without information loss and can represent covering all results of the original FIM with saving memory space and time. Therefore, many FCIM approaches have been proposed [1] - [14].

Besides the best solution, an appropriate data structure and corresponding frequency computation functions are a key to improve the performance of each method. Recently, many data structures for computing the FCIM have been proposed ([4], [7], [10], [12], [14]).

In 2002, CHARM algorithm and IT-TREE data structure [4] were proposed for finding frequent closed itemsets. That approach is efficient in frequency counting over FCIM with using inverted lists data structure. However, it requires large memory space for storing node information ((m-1) pointers and its hashing). The frequency computation and the closure process of that prefix tree approach are still the heaviest task of the FCIM, especially the process of the longest path of the prefix tree (≤ m items).

In 2003, the array list data structure was introduced to support LCM approach [7], by storing each transaction of the database in the array lists. That array list-based method is efficient in computation for a sparse transaction database, but it is still weak in a dense transaction database [10].

In 2006, the vertical bitmap data structure was improved over the original bitmap to support DC1-CLOSED approach [12]. That data structure is efficient in memory space for the dense transaction database, especially to save memory in storing data by using only one bit (0 or 1) for each item, represented in all itemsets. However, that method may not be efficient in time (O(mT^2)) in the sparse transaction database since its corresponding bitmap matrix containing many 0s but the process is equal to mT^2 fixed steps, where m is a number of frequent 1-itemset and T is a number of transactions in the database.

The collaboration of array lists, vertical bitmap, and prefix-tree data structure [10] was proposed in 2005 to utilize the advantages of those basic data structures for making more efficient in computation time and saving more memory space. In particular, the (compact) prefix tree and (bucket) array lists are combined to
reduce the FCIM computing time over that of the (original) prefix tree in CHARM [4] and the array list in LCM [7]. In addition, using the bitmap (transaction) node and no extra space for \((m-1)\) parent-child pointers and hashing (in each node). So far, the collaboration method is efficient but it requires time to sort all transactions and combine the repeated transactions before constructing the prefix tree (from the leaf nodes to the root), corresponding to the specific transaction order.

In this paper, we propose the improved collaboration data structure, called the EBPA (Efficient Bitmap-Prefix-tree Array) and the EBPA-CLOSED algorithm for frequent closed itemset mining. The EBPA data structure, the (top down) prefix-tree construction, is an improved version of our previous work, the (bottom up) prefix-tree BPA [14]. In order to gain the advantage of the collaboration approach, our EBPA maintains all features and results of the existing collaboration data structure [10] without extra sorting and merging transactions. In our EBPA data structure, the efficient (parent-child) access is introduced in \(O(1)\) time by using a temporary pointer array (in each node) but no hashing space and

Fig. 1 a) an original transaction dataset, containing four 1-itemsets \((a, b, c\) and \(d)\) and existing data structures represent nine transactions, b) Vertical Bitmap Matrix, c) Array List, d) Prefix tree, and e) Collaboration (Array, Bitmap, Prefix tree).
no extra sorting all transactions. Our method provides not only saving space but also saving time that is faster and easier to access each (parent-child) node of the prefix-tree array for filling and counting the frequency. Finally, like the existing collaboration, the result of our EBPA provides the faster computing in item-based buckets (arrays) for the closure process of the FCIM mining. In addition to saving space, we design the EBPA that creates the compact prefix tree, containing only occurrence nodes from the transaction database (with storing 2 integers (tid and w) in each node) and uses the shared (bitmap) itemsets among corresponding nodes along the same path (of the prefix tree) for saving more space.

The remainder of this paper is organized as follows: Section 2 provides a concise survey of related work. Section 3 presents our efficient EBPA data structure and the EBPA-CLOSED algorithm for the FCIM mining. Section 4 displays the performance evaluation and experimental results. Finally, conclusion and future study are discussed in Section 5.

2 Related Work

The FCIM, first proposed by Pasquier et al.[1] in 1999, is an interesting alternative solution for representing useful extracting patterns from very large candidate patterns within transaction database. The FCIM is known as an efficient mining technique because of interesting only the frequent closed itemsets instead of mining the complete set of frequent itemsets. The complete itemsets derived from this method can reduce a number of itemsets without information loss, where as it can represent or cover all results of the original FIM. Therefore, the FCIM approach saves more time to search only the frequent closed itemsets without using a huge space for keeping all result patterns.

Let $D = \{t_1, t_2, t_3, \ldots, t_T\}$ be a transaction database. Each t_i is a transaction ($i = 1, 2, 3, \ldots, T$) in the database consisting of a transaction identifier (tid) and items ordered from 1 to k items ($i_1, i_2, i_3, \ldots, i_k$).

Definition 1: Let $I = \{i_1, i_2, i_3, \ldots, i_k\}$ be a set of items in transaction database that every subset P of I is called an itemset. The itemset P with k items is called a k-itemset. The number of transaction in D matching the itemset P is called the support of P, denoted as $\text{supp}(P)$. Given a minimum support threshold min_supp, the itemset P is called a frequent itemset if and only if $\text{supp}(P) \geq \text{min_supp}$.

Example 1: Form input transaction database in Fig.1a, there are four 1-itemsets (a, b, c, and d) and suppose minimum support threshold is 5. The frequent 1-itemsets are (a:9), (b:6), (c:6) and (d:5). Therefore a set of frequent itemsets is {(a:9), (b:6), (c:6), (d:5), (ab:6), (ac:6), (ad:5), (abc:5)}, because their occurrences (or support) are equal to or more than 5 (support ≥ 5) that pass the minimum support threshold.

Definition 2: The itemset P is a closed itemset if there is no superset and can represent all itemsets that belong to the same equivalence class with the same
support. A closed itemset P is frequent if its support passes the given support threshold ($\text{supp}(P) \geq \text{min_supp}$).

Example 2: From input transaction database in Fig.1a, suppose minimum support threshold is 5. The itemsets $a:9$, $ab:6$, $ac:6$, $ad:5$, and $abc:5$ are called the closed frequent itemsets (see Fig.2), because their occurrences are equal to or more than 5, passing the given support threshold, and can represent the belonging itemsets in the same equivalence class with the same support.

Fig.2 shows the lattice of frequent itemsets and closed frequent itemset derived from the input transaction database from Fig.1a. For example, the itemset $cab:5$ is a closed frequent itemset, because it can represent itemsets $c:5$, $ca:5$, $cb:5$, and $cab:5$, etc. That approach collects five itemsets only, instead of storing all itemsets, and hence can save more space. The closed itemsets are the results of the frequent closed itemsets mining (FCIM) representation of all frequent itemsets in the same support of equivalence class extracted from the transaction database. In the past ten years, many FCIM techniques [4], [7], [10], [12] were proposed to solve the data storage problem with compacted data by storing a set of representative itemsets that can cover all other itemsets. Each technique has its specific function and data structure that have some advantages and disadvantages to tradeoff. The performance keys of each technique are the efficient data structure construction, including the fast frequency computation function.

The vertical bitmap data structure was developed to support DCI-CLOSED approach [12] (Fig.1b) and its efficacious FCIM traversed the search space in a depth-first manner. This data structure is a memory space efficient structure for the dense transaction database, especially in saving memory to store data in main memory that represents all itemsets in the input transaction database by using only one bit (0 or 1) for each item (or mT bits for all transactions (T)), where m represents a number of frequent 1-itemsets. However, this method may not be efficient in time ($O(mT^2)$) for the sparse transaction database since its corresponding bitmap matrix containing many 0s but the process is always equal to mT^2 iterations. Therefore, that data structure will take long time to compute the frequency of itemsets in case of there are a lot of transactions (T) in the database whereas there are a few number of items in each transaction.
The array list data structure was used to support the original LCM [7]. In this (inverted) list-based approach (Fig.1c), each of \(T \) transactions in the database is scanned and stored in frequent 1-itemset buckets in \(O(mT) \) (see Fig.1c). A number of array lists are equal to the number of the frequent 1-itemset \((m) \) and the length of each array is equal to the frequency of each 1-itemset. The array list data structure computes the frequencies of itemsets by scanning from the lists of the 1-itemset in \(m \) buckets. Thus, the array list-based method yields an efficient computation for a sparse transaction database, but it is still weak in any dense transaction database.

The IT-TREE data structure (see Fig.1d) and CHARM algorithm [4] were proposed for finding frequent closed itemsets. The process of that approach is based on the prefix tree and (parent-child) hashing for support both dense and sparse transaction databases that store an itemset \((\leq m \text{ bytes}) \) in each node of the prefix tree, where \(m \) is a number of frequent 1-itemsets. Each node of the tree contains an item identifier \((\leq m \text{ bytes}) \), a support (or frequency), a parent-node pointer, child node indices \((\leq m) \), and a hashing table. The prefix tree is constructed from the root and the first level contains 1-itemsets only and their (inversed-list) frequency counting for \(T \) transactions in \(O(mT) \), where \(m \) is a number of levels (for \(m \) 1-itemsets). More time are required for adding all corresponding nodes (in other levels) of the prefix tree. The main advantage of using IT-TREE in CHARM is that frequent searching with the hashing (parent-to-child nodes) is efficient. However, that approach may require large memory space for storing node information (in bytes) in all nodes \((n \leq N = 2^0 + 2^1 + \ldots + 2^{m-1} = 2^m - 1)\). The frequency computation and the closure process of that prefix tree are still the heaviest task of the FCIM mining, especially the process of the longest path of the prefix tree \((\leq m \text{ items}) \).

Lately, the collaboration data structure [10] was introduced (see Fig.1e) to combine three basic data structures (array lists, vertical bitmap, and prefix tree) to utilize advantages of each data structure for making more efficient in computation time and saving more memory space. Such a collaboration data structure was developed to support the efficient LCM (version 3) for mining large transaction

![Fig.2](image_url) A lattice of the frequent closed itemset \((\text{min_supp}=1)\) mine the input data from Fig.1a.
database, including dense and spare databases. In that collaboration, the (compact) prefix tree and (bucket) arrays are combined to save time of frequency computing and closed processing over that of the (original) prefix tree in CHARM [4] and the array list in original LCM [7]. In addition, the (bitmap) transaction in each tree-node is used to save space over the construction of the prefix tree in CHARM (since there is no extra space required for (m-1) parent-child pointers and hashing (in each node)). However, that collaboration approach requires the extra sorting of all T transactions (m elements per transaction), according to decreasing order of levels and prefix items in $O(mT)$, to merge the repeated transactions before constructing the (bottom up) prefix tree, corresponding to that transaction order. After merging the repeated transactions, the collaboration data structure is created, as follows: Each of T' ($\leq T$) unique transactions is scanned to fill its initial frequency into the corresponding node (of the prefix tree), containing an m-bitmap array and a weight) from leaf nodes to the root in $O(T')$. During move to fill frequency of nodes in the next (lower) level (of m levels), the frequency of each child node is shared to corresponding parent nodes (for m levels (n_i nodes in each level i)). Therefore, time complexity of the collaboration to construct the (compact) prefix tree is $O(mT) + O(mn_iT')$, where $n_i = max(n_i)$, $n_i \leq 2^i$ and $i = 0, 1, 2, \ldots, m-1$. In addition, to save space, that data structure stores bitmap-itemsets in binary (0/1) format, like the vertical bitmap, in each node of the prefix tree. Next process is performed in separate array buckets, which store only occurrence (transaction) nodes and process the frequency counting of the remaining itemsets in the buckets for efficient FCIM mining. Finally, the efficient FCIM processing in LCM3 is computed by applying the ppc-extension (prefix preserving closure process) algorithm [11] and the collaboration data structure [10]. Practically, the collaboration approach is efficient for the FCIM mining since using bitmap-node (without (m-1)-pointers) to save memory space and using prefix-tree plus bucket arrays to save processing time of the FCIM mining. However, the response time of that collaboration in LCM3 can be improved if its process does not require extra sorting to order all T transactions before constructing the prefix tree.

3 The improved Collaboration (EBPA) Data Structure for FCIM Mining

In this section, we present the improved collaboration data structure, called “the EBPA (Efficient Bitmap Prefix-tree Array) data structure” based on the efficient (parent-child) access of the prefix-tree array in $O(1)$ and the EBPA-CLOSED algorithm to improve both time and space for the FCIM mining. The contribution of our FCIM mining includes the following functions:

1. Propose the (parent-child) access ($O(1)$) for the (compact) prefix tree (in Section 3.1).
2. Design the efficient EBPA data structure that utilizes the (compact) prefix tree and (bucket) arrays with no extra sorting before constructing the prefix tree (in Section 3.2).

3. Improve the ppc extension [11] for the FCIM mining with the pre-test technique to look over unnecessary closure sets and post sets and save the response time of the FCIM computing (in Section 3.3).

3.1 The (Temporary) Pointer Array for Efficient Parent-Child Access: \(O(1)\)

Fig. 3a illustrates an example of the (compact) prefix tree (of four items \(a, b, c, d\)) that node indexing (in each level) are assigned corresponding to order of incoming transactions. Fig. 3b depicts the (complete) prefix tree, where node indexing (in each level \(i\)) are assigned with prefix ordering \((0, 1, 2, \ldots, n_i-1, \text{where } n_i = \text{a number of nodes in level } i = 2^i)\) and \(i = 0, 1, 2, \ldots, m-1\). Practically, the (compact) prefix tree requires a counter \((c_i)\) in each level \(i\) to set index (for each bucket array without any fragment) and hence the number of occurrence nodes \((n_i \leq 2^i)\) in each level \(i\) can be linear up to exponential nodes.

Let \(b_0b_1b_2 \ldots b_{m-2}b_{m-1}\) represent the (bitmap) transaction or itemsets. \(ptr\) represent a (temporary) pointer array with \(O(1)\) access (equation (1)).

\[l_p \text{ represent the level of the parent node, where } l_p = p \text{ and } 0 \leq p \leq m-1.\]

\[l_i \text{ represent the level of the child node, where } l_i = i (> p) \text{ and } 0 < i \leq m-1.\]

\[c_i \text{ represent the counter for setting (compact) node-index in each level } i.\]

For each (bitmap) transaction, the \(lptr\) (in equation(1)) is computed in \(O(1)\) to point to corresponding child directly, related to levels of child \((l_i = i)\) and parent \((l_p = p)\), illustrated in Table 1 for all internal nodes of the prefix tree.

During construction of the (compact) prefix tree, the (temporary) pointer array \(ptr\) is required for each (internal) occurrence node. A number of child nodes for a parent are \(m-p-1\) nodes, depending on a number of items \((m)\) and prefix-items upto the parent node \((p)\). The location of that pointer array \((m-p-1\) elements) for each particular parent-child can be 0, 1, 2,\ldots, or \(m-p-2\), as defined in equation (1).

\[\text{location of } ptr = l_i - l_p - 1, \text{ where } \#\text{childs} = m - p - 1 \quad (1)\]

For each (bitmap) transaction, the \(lptr\) (in equation(1)) is computed in \(O(1)\) to point to corresponding child directly, related to levels of child \((l_i = i)\) and parent \((l_p = p)\), illustrated in Table 1 for all internal nodes of the prefix tree.
Table 1. The (temporary) pointer array for all (internal) nodes of the prefix tree.

<table>
<thead>
<tr>
<th>node</th>
<th>bitmap</th>
<th>level</th>
<th>i,=i</th>
<th>location of ptr</th>
</tr>
</thead>
<tbody>
<tr>
<td>a</td>
<td>1000</td>
<td>0</td>
<td>$i=1$</td>
<td>ptr =1-0-1 = 0</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>$i=2$</td>
<td>ptr =2-0-1 = 1</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>$i=3$</td>
<td>ptr =3-0-1 = 2</td>
</tr>
<tr>
<td>ab</td>
<td>1100</td>
<td>1</td>
<td>$i=2$</td>
<td>ptr =2-1-1 = 0</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>$i=3$</td>
<td>ptr =3-1-1 = 1</td>
</tr>
<tr>
<td>b</td>
<td>0100</td>
<td>1</td>
<td>$i=2$</td>
<td>ptr =2-1-1 = 0</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>$i=3$</td>
<td>ptr =3-1-1 = 1</td>
</tr>
<tr>
<td>abc</td>
<td>1110</td>
<td>2</td>
<td>$i=3$</td>
<td>ptr =3-2-1 = 0</td>
</tr>
<tr>
<td>ac</td>
<td>1010</td>
<td>2</td>
<td>$i=3$</td>
<td>ptr =3-2-1 = 0</td>
</tr>
<tr>
<td>bc</td>
<td>0110</td>
<td>2</td>
<td>$i=3$</td>
<td>ptr =3-2-1 = 0</td>
</tr>
<tr>
<td>c</td>
<td>0010</td>
<td>2</td>
<td>$i=3$</td>
<td>ptr =3-2-1 = 0</td>
</tr>
</tbody>
</table>

3.2 The Construction of the EBPA Structure

We design the efficient EBPA data structure as an array-based (compact) prefix tree for saving space (in practice) that concerns only occurrence transactions and their corresponding parent nodes, an improved version of our previous data structure (BPA) [14] that exponentially generates full nodes (N) of the complete prefix tree (Fig.3b), where $N = 2^0 + 2^1 + 2^2 + \ldots + 2^i + \ldots + 2^{m-1} = 2^m - 1$ nodes. In particular, there are two main steps in the collaboration based EBPA-FCIM mining: 1) create the (compact) prefix tree (Fig.4b) and the (bucket) arrays (Fig.4c) in Section 3.2 and 2) compute the closure sets and post sets of the FCIM mining (see Section 3.3). Our focus in this section is the first part, the EBPA (Efficient Bitmap-Prefix tree Array) data structure, which is introduced to improve space and time of the construction of the (compact) prefix tree array (from T transactions directly without extra sorting), while yielding similar results to the original collaboration in LCM3 [10]. In our EBPA structure, the (temporary) pointer array ptr (of $m-p-1$ elements with initially setting to -1) is introduced with efficiently accessed in $O(1)$ by using a specific location lp (equation(1)) and a counter (c_i) in each level i to access parent-child nodes ($< m$) (without hashing). Note that the initial counter c_i is set to -1 ($c_i = -1$) and it is incremented by one ($++c_i$) before adding the new node (in level i) for the corresponding transaction. Therefore, time complexity of the frequency computing (along the same path) for each transaction is $O(m)$ for existing nodes and $O(m^2)$ for new nodes and for all T transactions is $O(m^2n) + O(mT)$, where $n = \max(n_i)$ and $n_i \leq 2^i, i = 0, 1, 2, \ldots, m-1$.
Algorithm 1: Constructing of EBPA data structure.

Step 1: Initial process

1.1 scan all transactions to find some parameters: T (number of transactions), k (number of itemsets), f (frequency of each item), l (level of each transaction), and set minimum support threshold to find m (number of frequent itemsets).

1.2 sort m frequent itemsets in descending order of item frequency.

1.3 convert all T transactions in a bitmap 0/1 format (m-bit).

Step 2: EBPA construction

Start with scanning (bitmap) transaction for finding the level (i) containing 1-bit.

2.2 check in level i of (compact) prefix array whether there exists that node or not.

- if yes (i.e., identifier ≥ 0), increment frequency; otherwise (i.e., identifier $=-1$) create node and set node information (tid, w, $m-p-1$ (temporary pointers)).

2.3 set current node to be parent (level p) and scan next 1-bit (level i) and apply eq. (1) (location of $ptr = i-p-1$) to link to child node (level i) and repeat step 2.2 - 2.3 until the end of transaction.

2.4 move to the next transaction and repeat step 2.1 - 2.4 until the last transaction.

The compact prefix-tree array (Fig.4b) is an associative array that a number of levels in prefix array are equal to a number of 1-itemsets (i.e., a, b, c, d). Each node contains only a support (weight w) and a transaction id (tid) to the shared bitmap array of the same branch of the prefix-tree array. In our approach, the bitmap-array table (Fig.4a) contains a number of shared bitmaps (0/1) of related transactions or nodes along the same path in the prefix tree (i.e., a shared bitmap 1111 for itemsets $abcd$ (4 bits) up to level 3, abc (3 bits) up to level 2, ab (2 bits) up to level 1, and a (1 bit)) in level 0. The size of the bitmap array is $T \times m$, where T is a number of transactions in database and m is a number of 1-itemsets that their support values $\geq \text{min}_\text{supp}$. The construction of our EBPA data structure is illustrated in Algorithm 1, which composes of two main steps: 1) the initial process and 2) the EBPA construction.

First, step 1.1 loads the input file to initialize memory and scans all transactions (in the database) for finding frequency of each item (f_i), m 1-itemsets,
a number of transactions \(T \). Then, step 1.2 sorts \(m \) frequent itemsets in descending order of item-frequency. Next, step 1.3 allocates the bitmap array and set 0 to initialized data. Then, scan all transactions by \(m \) frequency order pattern and set 1 into bitmap array in the frequent items. For example, Fig. 4a illustrates the bitmap array, the results of step 1 ready to generate the EBPA data structure.

In step 2, the existing collaboration [10] requires extra sorting \(T \) transactions \((m\)-bit itemset per transaction\) and their merging the same repeated transactions. Its prefix-tree arrays are constructed (i.e., fills the frequency back) from level \(m-1 \) (leaf nodes) to level 0 (the root), according to sorted \((T')\) unique transactions. Applying the compact prefix-tree array of that collaboration may confront with many difficulties (i.e., requiring extra sorting, finding child-parent relation, etc.) and take long time in cases of a large amount of \(1 \)-itemsets to build the prefix-tree array. In our top-down EBPA approach (with our efficient parent-child access in \(O(1) \)), we construct the compact prefix-tree array (without extra sorting) by storing only occurrence transactions and their parent nodes. In our approach, fill frequency processing time depends on a number of occurrence items (\(\leq m \)) in each transaction. Thus, time complexity of filling frequency for each transaction is \(O(m) \) for existing nodes or \(O(m^2) \) for new nodes (with \(m-p-1 \) temporary pointers per node) and \(O(m^2n) + O(mT) \) for all \(T \) transactions and there exist \(n \) nodes in the (compact) prefix tree. In step 2.1, we start with scanning the bitmap transaction for finding the level containing the first 1-bit, representing the first item of that transaction (i.e., assume level \(i \)). Next, step 2.2 checks in level \(i \) of the compact prefix array whether the current node was created in the level \(i \) or not. If that node does not exist, increment the counter of level \(i \) \((++c_i)\), create that node in level \(i \) (at index \(= c_i \)) and set information (i.e., a transaction id number \((tid)\), the support \((weight=1)\), and allocated the (temporary) pointer array \((ptr)\) to link to its \((m-p-1)\) child nodes with initial setting to \((-1)\). In case of that node was created already, increment frequency (or weight) in that child node. Then, step 2.3 sets the current node to be the next parent (in level \(p \)) and scans the same transaction to find out the level of the next 1-bit (i.e., level \(i > p \)). From the parent node (in level \(p \)) and the particular child (in level \(i \)), apply equation (1) to jump to that child node directly. Then, repeat step 2.2–2.3 for the next item (or 1-bit) until the end of transaction. Next, move to the next transaction and repeat the same process (step 2.1–2.4) until the end of dataset (with the last transaction). Lastly, free the (temporary) bucket array for returning the memory space.

In our EBPA data structure, the (compact) prefix tree array is constructed for each of nine transactions \((tid0 – tid8)\) of the input dataset (Fig.4a), as follows:

For each \(tid0 – 1 \) \((abcd: 1111)\), the 1st and 2nd items are \(a \) (parent, level \(p=0 \)) and \(b \) (child, level \(i=1 \)) and hence the location of \(ptr = i - p - 1 = 1-0-1 = 0 \) (that is \(ptr[0] = ++c_1 = 0 \)) and then weight \(w \) of node\([c_1=0]\) in level 1 is incremented. Next child of that itemset is \(c \) (level \(i=2 \)) with parent \(b \) (level \(p=1 \)) and the location of \(ptr = i - p - 1 = 2-1-1 = 0 \) (that is \(ptr[0] = ++c_2 = 0 \)) and then weight \(w \) of node\([c_2=0]\) in level 2 is increased. Finally, last child of that itemset is \(d \) (level \(i=3 \)) with parent \(c \) (level \(p=2 \)) and the location of \(ptr = i - p - 1 = 3-2-1 = 0 \) (that is \(ptr[0] = ++c_3 = 0 \)) and then weight \(w \) of node\([c_3=0]\) in level 3 is increased.
Next, for tid 2 (ab: 1101), the first and second items are a (parent, level \(p=0 \)) and b (child, level \(i=1 \)) and hence the location of \(\text{ptr} = i - p - 1 = 1-0-1 = 0 \) (and \(\text{ptr}[0] = 0 \)) and then weight \(w \) of node[0] in level 1 is added. Lastly, next child of that itemset is d (level \(i=3 \)) with parent b (level \(p=1 \)) and the location of \(\text{ptr} = i - p - 1 = 3-1-1 = 1 \) (that is \(\text{ptr}[1] = + +c_3 = 1 \)) and then weight \(w \) of node[\(c_3=1 \)] in level 3 is added.

For tid 3 (ad: 1001), the first and second items are a (parent, level \(p=0 \)) and d (child, level \(i=3 \)) and hence the location of \(\text{ptr} = i - p - 1 = 3-0-1 = 2 \) (that is \(\text{ptr}[2] = + +c_3 = 2 \)) and then weight \(w \) of node[\(c_3=2 \)] in level 3 is incremented.
EBPA: an efficient data structure for frequent closed itemset mining

tid 4-5: abc (1110)
- Tree node: a
- Bitmap (shared)
- p = 0, i = 1
- ptr = 1-0-0 = 0
- p = 1, i = 2
- ptr = 2-1-1 = 0
- 0 to ab (level 1)
- 1 to ac (level 2)
- 2 to ad (level 3)

tid 6: ac (1010)
- Tree node: a
- Bitmap (shared)
- p = 0, i = 2
- ptr = 2-0-1 = 1
- 0 to ab (level 1)
- 1 to ac (level 2)
- 2 to ad (level 3)

tid 7: abc (1110)
- Tree node: a
- Bitmap (shared)
- p = 0, i = 1
- ptr = 1-0-0 = 0
- p = 1, i = 2
- ptr = 2-1-1 = 0
- 0 to ab (level 1)
- 1 to ac (level 2)
- 2 to ad (level 3)

tid 8: ad (1001)
- Tree node: a
- Bitmap (shared)
- p = 0, i = 3
- ptr = 3-0-1 = 2
- 0 to ab (level 1)
- 1 to ac (level 2)
- 2 to ad (level 3)
For each tid 4 – 5 (abc: 1110), the first and second items are a (parent, level \(p=0 \)) and b (child, level \(i=1 \)) and hence the location of \(\text{ptr} = i - p - 1 = 1-0-1 = 0 \) (and \(\text{ptr}[0] = 0 \)) and then weight \(w \) of node[0] in level 1 is incremented. Lastly, next child of that itemset is c (level \(i=2 \)) with parent b (level \(p=1 \)) and the location of \(\text{ptr} = i - p - 1 = 2-1-1 = 0 \) (and \(\text{ptr}[0] = 0 \)) and then weight \(w \) of node[0] in level 2 is incremented. Similar processes are repeated for tid 6 (ac or 1010), tid 7 (abc or 1110), and tid 8 (ad or 1001), as illustrated in the above figures.

Note: the shared-bitmap array is introduced in our approach in order to save more space in each node since only transaction id number (tid), referring to the bitmap of each itemset, is stored and the corresponding bitmap among nodes along the same path are shared (upto level \(i \) of the last item), as illustrated in the above example.

After completing (fill/increment frequency) all \(T \) transactions, our efficient (compact) prefix-tree array reduces the frequency searching area for the FCIM process by decomposing the large transaction database (\(T \) transactions) into the compact prefix arrays (without any fragment) for making short lists collected only related data without generated the complete prefix tree (including some fragments). In our (compact) prefix tree array, we apply “(temporary) pointer” array (in each occurrence node) for faster accessing child node and use “shared bitmap” for saving more space. Finally, we will free the memory storing the temporary pointer array before processing closed mining step of the FCIM in (bucket) arrays (in Section 3.3). Compared to the prefix-tree array of the original collaboration [10], time complexity of that prefix tree is \(O(mT) + O(mnT') \), depended on \(T' \) (a number of unique transactions), while our time complexity is \(O(m^2n) + O(mT) \), based on \(n \) (a number of occurrence nodes in the compact prefix-tree array). Practically, for most of transaction databases, a number of occurrence nodes are less than a number of all unique transactions.

After finishing the compact prefix-tree array, the array buckets are ready for the FCIM mining step, containing accumulated frequency in each prefix path. The next step of the EBPA-based FCIM computing (in Section 3.3) requires the frequency counting (of some remaining itemsets). Compared to some data structures (i.e., array list, bitmap, and prefix tree), that frequency computing in the FCIM mining is a heaviest task and time consuming. In the collaboration approach, the remaining process is performed efficiently in level-based buckets (of the prefix tree) to simplify the process because processing with a number of nodes in each level \((n_i) \) by the collaboration structure are less than processing with a number of transactions \((T) \), as required in other data structures.

3.3 The EBPA-CLOSED for the FCIM Mining

The efficient FCIM computing (Algorithm 2) is processed faster from the (bucket) arrays of our EBPA data structure. Our EBPA-CLOSED Algorithm consists of two main steps: 1) the initial data and 2) the closed itemsets. The idea of computing the closure process in Algorithm 2 is improved from the ppc-extension (prefix preserving closure extension) [11] by searching all closed itemsets in an
efficient depth-first search manner. Our focus is using the pre-test technique for the frequent closure sets and the frequent (root sub-tree) post sets to reduce unnecessary repeated steps of the closure operation. Note: see definitions of the closure set and the post set in Definition 3 and 4, defined in [11].

In step 1, the initial data are prepared for each frequent 1-itemset generator from our EBPA data structure to efficiently counting frequency in the FCI to be ready for computing suffix closed itemsets of the 1-itemset generators (in step 2). For a generator item, we compute the corresponding (frequent) closure sets and frequent (root sub-tree) post sets, the related data generated from transaction including the generator only, for quickly computing the (level-based) frequency.

Definition 3: Given a generator itemset \(P_l \), the closure sets of \(P_l \) are the corresponding itemset of \(P_l \) in the lower level than \(P_l \) level, denoted as \(\text{closure}(P_l) \). The \(\text{closure}(P_l) \) are the itemsets \(i_0, i_1, i_2, \ldots, i_{l-1} \), where, \(l \) is the level of a generator itemset.

Definition 4: Given a generator itemset \(P_l \), the post sets of \(P_l \) are the corresponding itemset of \(P_l \) in the higher level than \(P_l \) level, denoted as \(\text{post}(P_l) \). The \(\text{post}(P_l) \) are the itemsets \(i_{l+1}, i_{l+2}, i_{l+3}, \ldots, i_{m-1} \), where, \(l \) is the level of a generator itemset.

Apply definition 3 (in Algorithm 2) with pre-test for the (frequent) closure sets can reduce the number of closure sets of the generator and reduce the number of suffix generators. Apply definition 4 with pre-test for the frequent (root sub-tree) post set can reduce the number of post sets of the generator. Note that in our approach, the frequent closure set is the closure set that its frequency counting \(\geq \text{min_supp} \) and the frequent (root sub-tree) post set is the post set that is a child of the generator and its frequency counting \(\geq \text{min_supp} \). For example, Fig.5 shows

Algorithm 2: The EBPA-CLOSED Algorithm.

<table>
<thead>
<tr>
<th>Step 1: Create Initial data (from 1-itemset generator)</th>
<th>([O(mn)])</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.1 for each of generator item, scan and count weight of existing itemsets (n_i \leq n) in its bucket by go directly in that bucket, where (n) is a number of nodes in level (i) ((\leq 2)) and (n = \max(n_i), 0 \leq i \leq m-1).</td>
<td></td>
</tr>
<tr>
<td>1.2 from that generator, find its (frequent) closure set (prefix items of gen-item) from the generator level and frequent (root sub-tree) post set (suffix items of gen-item).</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Step 2: Find closed itemsets</th>
<th>([O(mn)])</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.1 compare frequency of gen-item with (frequent root sub-tree) post sets to find a closed itemset.</td>
<td></td>
</tr>
<tr>
<td>2.2 extend intermediate results of step 2.1 by generated new generator from closed itemset and their closure results.</td>
<td></td>
</tr>
<tr>
<td>2.3 repeat step 2.1-2.3 for find the new closed itemset (residing in higher level than the generator item) until closure=0 (no closure result).</td>
<td></td>
</tr>
</tbody>
</table>

| Step 3: repeat Step 1-2 for other \(m \) 1-itemset generators. | \([O(m^2n)]\) |

the prefix-tree lattice (with the minimum support=1). For the generator itemset \((a:12)\), its post sets are \((b:9), (c:8), (d:6), (e:4)\) and \((f:3)\). After applying the
pre-test technique, the frequent (root sub-tree) post sets of the generator are \((b:9)\) and \((c:8)\). Clearly, this case can reduce repeating process for five post sets to two post sets only. Because of the nature of the prefix-tree, the suffix node will have the frequency less than or equal to its prefix node (or its root sub-tree). Therefore, time of repeated check with some (unnecessary) post sets can be skipped.

Fig. 5 a) An example of the prefix-tree lattice and b) The frequent (root sub-tree) post sets of the generator

Next, we will apply the pre-test technique in the initial data (step 1) from our EBPA data structure to compute the (frequent) closure sets and the frequent (root sub-tree) post sets of the generator efficiently. Like the collaboration data structure in LCM [10] with ppc-extension [11], the initial data are created from the related data of the 1-itemset generator only and are reused for corresponding \(k\)-itemset generators to find all suffix closed itemsets of the 1-itemset. Thus, the frequency from the initial data will be processed faster (or saving more time) than those of the existing data structures (such as the original bitmap [12], the array list [7], and the original prefix tree [4]). In our approach, the initial data can be created step by step, as follows:

First, we start with setting the generator list to the level of the generator. The generator list contains index links \((tid)\) to the bitmap array and the weight \((w)\) of each node form the prefix-tree array. Fig.6 illustrates an example of the initial data (of four generators) that are generators of items \(a\) (in level 0), \(b\) (in level 1), \(c\) (in level 2), and \(d\) (in level 3)).

Next, we scan the lower (position) items than the generator in the bitmap array of the generator to find the frequent closure sets (only their weights \(\geq min_supp\)) and create lists of the closure sets. Lastly, we scan all nodes for the frequent (root sub-tree) post sets (only childs of the generator with their weights \(\geq min_supp\)).

Time complexity of this process is \(O(mn)\) for each generator \((\leq n\) nodes in each level, \(m\) elements of closure set and postset) and \(O(m'n)\) for all \(m\) generators.
Fig. 6c shows the initial data of a generator item c, which can be computed step by step, as follows: The generator c showed in level 2 of the prefix array having 2 nodes. Each node of level 2 links to index 0 and 1 of the prefix array and (bitmap) tid 0 and 6 of the bitmap array, respectively. Then, data of itemset b is set for defining closure sets and an itemset d for defining post set. Next, we add all tid (a link to (shared) bitmap of itemsets) and w (their corresponding weights) into the generator ca and its corresponding closure (b) and postset (d), for the initial data. The generator itemset ca (in level 2) occurs at location 0 and 6 of the bitmap array with weights 5 and 1. At level 2, the itemset b occurs at location 0 with weights is 5. The itemset d data is defined (in the next level 3) for computing the postset, which is weight 2 at location 0. Similar processes are performed to define the initial data for other generator a (Fig.6a), b (Fig.6b), and d (Fig.6d), including the frequency counting.

In the frequency computing, the searching area is the main issue affecting the performance of the FCIM process, such as the bitmap matrix [12] always computes the frequency in all transactions and the array list [7] finds the frequency by searching in bucket arrays, which are time consuming, especially on large databases. For example, if we compute the frequency of the generator itemset c in the bitmap format (see Fig.1b) and the array list (see Fig.1c) directly, that process takes 9-step and 6-step loops, respectively, while our EBPA-based approach takes a shorter computation time (2 steps only), see Fig.6c. Thus, our processing time is efficient, especially in case of the long transaction database.
Like the original collaboration in LCM-3 with ppc-extension [11] time complexity of our EBPA-based FCIM for creating a generator and its frequent closure sets and frequent (root sub-tree) post sets for frequency counting is $O(mn)$ and hence $O(m^2n)$ for all m generators since there are $\leq n$ nodes in each level, $\leq m$ elements of (frequent) closure sets and post sets. Note: applying the pre-test for efficient closure sets and post sets often provides the best case process in $O(mn)$.

According to our initial data (with pre-test for efficient closure sets and post sets for each generator) and shared bitmap of corresponding itemsets, we design a more efficient computing and memory saving technique. In our approach, we generate the initial data of each 1-itemset generator first (in step 1) and then reused them for finding all suffix closed itemsets (or k-itemset generators in higher levels) of the 1-itemset generator (in step 2). For example, the result in Fig.6c shows the initial data that are prepared for the generator (itemset ca) from the EBPA data structure, including the data of the generator, the closure set (itemset b) and the post set (itemset d). Form this initial data, we can find all suffix closed itemsets of the 1-itemset c (up to level 2).

For the generator itemset ca (with one closure set (b) and one postset (d)), we can find total frequency of the generator and each closure set and postset (i.e., $ca:6$, $b:5$, $d:2$). Then (see Fig.7c), find intersection of $ca:6$ (in level 2) and

![Diagram](image)

Fig.7 Our EBPA-based closed itemsets from 4 single itemset generators.
compare to $ca:6$ with their postset for duplication checking. In this case, itemset c is not closed (c, ca belong to the equivalence class with the same support 6), and only ca is called closed. Since $cb:5$ is not equal to $c:6$ then cb is not closed. Next, in level 3, find intersection of $cab:5$ and compare with the postset and hence itemset cab is called closed. From the example illustrated in Fig.7a-d, we will find that our EBPA-CLOSED can generate closed itemsets from another prefix closed itemset from the previous (lower) level (by reusing intermediate results) and reduce a number of non-generators without storing previously enumerated itemsets.

4 Performance Evaluation

In performance evaluation, we implemented our EBPA data structure and the EBPA-CLOSED Algorithm, compared with the existing approach. Our program code was written in C language. Experiments have been performed on a Windows XP notebook PC, equipped with a 2.5 GHz Intel Core i5 and 2048MB of RAM memory. A number of experiments were investigated by using a four-data tested set of dense transactions, which are $connect$, $chess$, $pumsb^*$ and, $pumsb$ respectively. These existing datasets have been used for testing in many FCIM approaches. The $chess$ dataset composed of 3196 tuples with 75 items, the $connect$ dataset composed of 67437 tuples with 129 items, the $pumsb^*$ dataset composed of 34776 tuples with 2001 items and the $pumsb$ dataset composed of 49046 tuples with 2113 items.

The performance results were recorded in terms of response time (in seconds). In each experiment, evaluated results of the EBPA-CLOSED mining (ebpa) have been investigated and compared to those of the existing LCM version 3 (lcm3) with original collaboration data structure [10] and FCIM ppc-extension [11]. For each data tested set, threshold of minimum support are set varying for investigating the response time of a number of limited frequent 1-itemsets. The (response time) results of our experiments were reported in Fig.8 - Fig.11, compared between our “ebpa” and the “lcm3”, the best of existing FCIM mining. In each figure, the y-axis represents the response time (of FCIM mining) with varying support thresholds (in x-axis) on four datasets ($chess$, $connect$, $pumsb^*$ and $pumsb$).
Fig. 8 The comparison of our ebpa-closed and lcm3 mining of chess data set with different minimum support.

Fig. 9 The comparison of our ebpa-closed and lcm3 mining of connect data set with different minimum support.
Fig. 10 The comparison of our ebpa-closed and lcm3 mining of pumsb* data set with different minimum support.

Fig. 11 The comparison of our ebpa-closed and lcm3 mining of pumsb data set with different minimum support.
The results showed that our ebpa approach performed very well on three datasets (chess, connect, pumsb*), which outperformed over those of the lcm3 approach. However, the percentage of improved results also depended on each type of datasets such as improved up to 22% on chess, 15% on connect, and 30% on pumsb* respectively. In all datasets, when decreasing the minimum support values (in the dataset), the response time increased in both approaches (ebpa, lcm3) because of the less minimum support values, the more frequent 1-itemsets and more time needed to process. For three of four datasets, our ebpa outperformed over those of the lcm3. The reason is that we introduce the improved collaboration data structure that provides the efficient FCIM mining, as illustrated in their time complexity (in Section 3.2 and 3.3). Time complexity of the FCIM algorithm (i.e., time for creating the initial data plus time for processing FCIM) in the lcm3 (using the original collaboration data structure [10]) is $O(mT) + O(mn_T') + O(m^2n)$, whereas that of our EBPA-based FCIM algorithm is $O(m^2n) + O(mT) + O(m^2n)$. Clearly, the response time of constructing our (compact) prefix tree is improved over that of the existing collaboration if the unique transactions (T') are more than the number of occurrence nodes (n) because (in practice) most of transaction databases and available datasets composites of $T' > n$. However, when $n > T'$ (in some datasets i.e., pumsb for min_supp < 40000 (Fig.11)), which there exist a lot of repeated transactions (less T') and a variety of itemsets (more n), the response time of the lcm3 is less than our ebpa approach.

5 Conclusion

This paper presents an improved collaboration data structure, called the EBPA data structure, and its corresponding algorithm (the EBPA-CLOSED algorithm) for frequent closed itemset mining (FCIM). Our proposed EBPA (Efficient Bitmap Prefix-tree Array) data structure for efficient FCIM algorithm can improve both space and time with $O(I)$ parent-child access (into the prefix-tree array). The performance evaluation was performed on four available datasets, which were pumsb, pumsb*, chess, and connect. Experimental results showed that our EBPA-based closed itemset mining (ebpa) can reduce response time up to 15-30% over that of the lcm3 in pumsb*, chess and connect datasets. Finally, our future research will focus on designing an efficient parallel EBPA-CLOSED algorithm with the EBPA data structure on multi-core systems.

Acknowledgement

We would like to thank the Office of the Higher Education Commission of Thailand and Ubonratchathani University for the financial support. We are also grateful to the owner of the datasets for providing the available datasets and the LCM editors for posting the best programming code.
EBPA: an efficient data structure for frequent closed itemset mining

References

Received: January, 2013