Erratum to: “Sub Compatible and Sub Sequentially Continuous Maps in Fuzzy Metric Spaces”

by M. Alamgir Khan and Sumitra,

Saurabh Manro

School of Mathematics and Computer Applications
Thapar University, Patiala (Punjab), India
sauravmanro@hotmail.com

On critical examination of the results given in our paper [1], we notice one crucial error. We need to carry out the following correction:

Example 3 given in paper [1] is wrong as \(k(x_n) = k\left(1 - \frac{1}{n}\right) = 2 \neq \left(1 - \frac{1}{n}\right) \).

So example 1 in paper [1] is replaced by below example:

Example I: Let \(X = \mathbb{R} \) (Set of Real Numbers). For each \(t > 0 \) and \(x, y \in X \), define

\[
M(x, y, t) = \begin{cases}
 t & t > 0, \\
 \frac{t}{t + |x - y|} & t = 0.
\end{cases}
\]

Then \((X, M, *)\) be fuzzy metric space. Let \(f, g, h \) and \(k \) be defined as follows:
Let \(\{x_n\} \) be a sequence in \(X \) defined by \(\left\{ x_n = y_n = 1 - \frac{1}{n} \right\} \) for \(n = 1, 2, 3, \ldots \)

Then, \(\lim_{n \to \infty} f(x_n) = \lim_{n \to \infty} h(x_n) = \lim_{n \to \infty} g(y_n) = \lim_{n \to \infty} k(y_n) = 1 \) and

\(f h(x_n) \to 1 = f(1) \), \(h f(x_n) \to 1 = h(1) \) when \(n \to \infty \)

Also, \(g k(y_n) \to 1 = g(1) \), \(k g(y_n) \to 1 = k(1) \) which shows that \((f, h)\) and \((g, k)\) are sub compatible as well as Subsequential continuous.

Therefore, all the conditions of Theorem 1 are satisfied and \(x = 1 \) is unique common fixed point of pair \((A, S)\).

REFERENCES

Received: November, 2012