Almost Linear Jordan Derivations on C^*–Algebras

Ick-Soon Chang
Department of Mathematics, Mokwon University
Mokwon Gil 21, Seo-gu, Daejeon, 302-318, Korea
ischang@mokwon.ac.kr

Madjid Eshaghi Gordji
Department of Mathematics, Semnan University
P.O. Box 35195-363, Semnan, Iran
madjid.eshaghi@gmail.com

Abbas Javadian
Department of Physics, Semnan University
P.O. Box 35195-363, Semnan, Iran
abasjavadian@gmail.com

Hark-Mahn Kim
Department of Mathematics
Chungnam National University
79 Daehangno, Yuseong-gu
Daejeon 305-764, Korea
hmkim@cnu.ac.kr

This work was supported by Basic Research Program through the National Research Foundation of Korea funded by the Ministry of Education, Science and Technology (No. 2012R1A1A2008139 and No. 2012-0002410)
Abstract. In this paper, we investigate almost linear Jordan derivations on C^*–algebras associated to the generalized Cauchy–Jensen functional inequality. As results, we apply the almost linear Jordan derivations on C^*–algebras to contractive, weakly amenable or amenable Banach modules.

Mathematics Subject Classification: 39B72, 46H25, 46B06

Keywords: Cauchy-Jensen functional inequality, C^*-algebras, Jordan derivations, Banach A-module, weakly amenable Banach modules

1. Introduction

Let A be a Banach algebra and let X be a Banach A–module. A linear mapping $d : A \to X$ is a Jordan derivation if $d(ab + ba) = d(a)b + ad(b) + bd(a) + d(b)a$ for all $a, b \in A$. A linear mapping $d : A \to X$ is a derivation if $d(ab) = d(a)b + ad(b)$ for all $a, b \in A$.

The dual space X^* is a Banach A-module if for every $a \in A$, $x \in X$ and $x^* \in X^*$ we define

$$
\langle x, ax^* \rangle = \langle xa, x^* \rangle, \quad \langle x, x^* a \rangle = \langle ax, x^* \rangle.
$$

For $x \in X$, we define $\delta_x : A \to X$ by $\delta_x(a) = a \cdot x - x \cdot a := [a, x]$, $(a \in A)$, then δ_x is a derivation from A into X. Derivations of this form are called inner derivations. We note that a Banach algebra A is contractible if every continuous derivation from A into X is inner for all Banach A–module X. A Banach algebra A is amenable if every continuous derivation from A into X^* is inner for all Banach A–module X. A Banach algebra A is weakly amenable if every continuous derivation from A into A^* is inner (see [5]).

The stability problem of functional equations originated from a question of Ulam [26] concerning the stability of group homomorphisms. We are given a group G_1 and a metric group G_2 with metric $\rho(\cdot, \cdot)$. Given $\epsilon > 0$, does there exist a $\delta > 0$ such that if $f : G_1 \to G_2$ satisfies $\rho(f(xy), f(x)f(y)) < \delta$ for all $x, y \in G_1$, then a homomorphism $h : G_1 \to G_2$ exists with $\rho(f(x), h(x)) < \epsilon$ for all $x \in G_1$? In other words, we are looking for situations when the homomorphisms are stable, i.e., if a mapping is almost a homomorphism, then there exists a true homomorphism near it.

First of all, Hyers [11] considered the case of approximately additive mappings between Banach spaces. The method which was provided by Hyers, and which produces the additive mapping h, was called a direct method. This method is the most important and most powerful tool for studying the stability of various functional equations. Hyers’ Theorem was generalized by Aoki [1] and Bourgin [3] for additive mappings by considering an unbounded Cauchy
Almost linear Jordan derivations on C^*–algebras

In 1978, Rassias [21] also provided a generalization of Hyers Theorem for linear mappings which allows the Cauchy difference to be unbounded like this $\|x\|^p + \|y\|^p$. A generalized result of Rassias’ theorem was obtained by Gavruta in [9] and Jung in [14]. In 1990, Rassias [22] during the 27th International Symposium on Functional Equations asked the question whether such a theorem can also be proved for $p \geq 1$. In 1991, Gajda [8] following the same approach as in [21], gave an affirmative solution to this question for $p > 1$. It was shown by Gajda [8], as well as by Rassias and Šemrl [23], that one cannot prove a Rassias type theorem when $p = 1$. The counterexamples of Gajda [8], as well as of Rassias and Šemrl [23], have stimulated several mathematicians to invent new approximately additive or approximately linear mappings.

We generalize the functional inequality to the following generalized Cauchy–Jensen functional inequality

$$\left\| \sum_{i=1}^{l} f(x_i) + m \sum_{j=1}^{n} f(y_j) \right\| \leq \left\| mf\left(\frac{\sum_{i=1}^{l} x_i}{m} + \sum_{i=1}^{n} y_j\right)\right\|,$$

where $l \geq 2, m \geq 1, n \geq 0$ are integers and $\sum_{i=1}^{n} E(i) := 0$ by notational convenience. Now, it is easy to see that if a mapping f with $f(0) = 0$ satisfies the generalized Cauchy–Jensen inequality (1.1), then f is additive.

In this paper, we investigate the almost linear Jordan derivations on C^*–algebras. Moreover, we apply the main results of paper to investigate the Jordan derivations on nuclear C^*–algebras and Jordan derivations from C^*–algebras into its dual spaces.

2. Main results

From now on, we suppose that A is a C^*–algebra and X is a Banach A–module. Moreover, we assume that $n_0 \in \mathbb{N}$ is a positive integer and suppose that $\mathbb{T}_{\frac{1}{n_0}} := \{e^{i\theta} : 0 \leq \theta \leq \frac{2\pi}{n_0}\}$.

In this section, we establish linear derivations from C^*–algebras to Banach A–modules. We start our work with the lemma 2.1 and the next lemma [6]. Quite recently, Peralta and Russo [20] proved the following lemma that generalized the result of Johnson (see for example, [12, 13]).

Lemma 2.1. Suppose A is a C^*–algebra and X is a Banach A–module. Then each Jordan derivation $d : A \to X$ is a derivation.

Lemma 2.2. Assume that a mapping $f : A \to B$ is additive and for each fixed $x \in A$, $f(tx) = tf(x)$ for all $t \in \mathbb{T}_{\frac{1}{n_0}}$. Then f is C-linear.

We first introduce our main theorem on linear derivations from C^*–algebras to Banach A–modules.
\textbf{Theorem 2.3.} Let $f : A \to X$ be a mapping with $f(0) = 0$ and
\begin{equation}
\|f(ab + ba) - f(a)b - af(b) - f(b)a - bf(a)\| \leq \varphi(a, b, 0, 0, \ldots, 0) \tag{2.1}
\end{equation}
for all $a, b \in A$. Let f satisfies the functional inequality
\begin{equation}
\left\| \sum_{i=1}^{l} f(x_i) + m \sum_{j=1}^{n} f(y_j) + f(tx) - tf(x) \right\| \leq \left\| mf \left(\sum_{i=1}^{l} x_i/m + \sum_{j=1}^{n} y_j \right) \right\| \tag{2.2}
\end{equation}
for all $x_1, \ldots, x_l, y_1, \ldots, y_n, x \in A$ and all $t \in \mathbb{T}^{n \to 2}$, and there exists a constant L with $0 < L < 1$ for which the perturbing function $\varphi : A^{l+n+1} \to \mathbb{R}^+$ satisfies
\begin{equation}
\varphi \left(\frac{l}{mn} (x_1, \ldots, x_l, y_1, \ldots, y_n, x) \right) \leq L \cdot \frac{l}{mn} \varphi(x_1, \ldots, x_l, y_1, \ldots, y_n, x) \tag{2.3}
\end{equation}
for all $x_1, \ldots, x_l, y_1, \ldots, y_n, x \in A$. Then there exists a unique linear derivation $d_1 : A \to X$, defined as $d_1(x) = \lim_{k \to \infty} (\frac{mn}{l})^k f((\frac{l}{mn})^k x), (x \in A)$ such that
\begin{equation}
\|f(x) - d_1(x)\| \leq \frac{1}{1-L} \Psi(x) \tag{2.4}
\end{equation}
for all $x \in A$, where
\begin{align*}
\Psi(x) & := \frac{1}{K} \varphi \left(\frac{x-x, \ldots, x-x, 0, \ldots, 0, x-x, \ldots, x-x, 0, \ldots, 0}{2^{\left[\frac{l}{2}\right]}} \right) \\
& \quad + \frac{1}{l} \varphi \left(\frac{-x, \ldots, -x, \frac{l}{mn}x, \ldots, \frac{l}{mn}x, 0}{n} \right), (x \in A),
\end{align*}
and $K := \left[\frac{l}{2}\right] + m \left[\frac{n}{2}\right]$ and $[\cdot]$ denotes Gaussian notation.

\textbf{Proof.} Putting
\begin{align*}
(x_1, \ldots, x_l) & := \left(\frac{x-x, \ldots, x-x, 0, \ldots, 0}{2^{\left[\frac{l}{2}\right]}} \right) \\
\text{and} \\
(y_1, \ldots, y_n, x) & := \left(\frac{x-x, \ldots, x-x, 0, \ldots, 0}{2^{\left[\frac{n}{2}\right]}} \right)
\end{align*}
in (2.2), we have an approximate odd condition
\begin{equation}
\|f(x) + f(-x)\| \leq \frac{1}{K} \varphi \left(\frac{x-x, \ldots, x-x, 0, \ldots, 0, x-x, \ldots, x-x, 0, \ldots, 0}{2^{\left[\frac{l}{2}\right]}} \right) \tag{2.5}
\end{equation}
for all $x \in A$, where $K := [\frac{l}{2}] + m[\frac{n}{2}]$ and $[\cdot]$ denotes Gaussian notation. Replacing
\[(x_1, \ldots, x_l, y_1, \ldots, y_n, 0) := (-x, \ldots, -x, \underbrace{\frac{l}{mn} x, \ldots, \frac{l}{mn} x}_l, 0)\]
in (2.2), we lead to
\[\|lf(-x) + mnf\left(\frac{l}{mn} x\right)\| \leq \varphi(-x, \ldots, -x, \underbrace{\frac{l}{mn} x, \ldots, \frac{l}{mn} x}_l, 0)\]
for all $x \in A$. Associating (2.5) with (2.6) yields
\[\|f(x) - \frac{mn}{l} f\left(\frac{l}{mn} x\right)\| \leq \Psi(x)\] (2.7)
for all $x \in A$. Thus, it follows from (2.7) that for all nonnegative integers k and j with $j > k \geq 0$ and $x \in A$
\[\left\| \left(\frac{mn}{l}\right)^k f\left(\frac{l}{mn} x\right) - \left(\frac{mn}{l}\right)^{k+j} f\left(\frac{l}{mn} x\right) \right\| \leq \sum_{i=k}^{k+j-1} \left\| \left(\frac{mn}{l}\right)^i f\left(\frac{l}{mn} x\right) - \left(\frac{mn}{l}\right)^{i+1} f\left(\frac{l}{mn} x\right) \right\| \leq \sum_{i=k}^{k+j-1} \left(\frac{mn}{l}\right)^i \left(\frac{l}{mn}\right)^i \Psi\left(\frac{l}{mn} x\right) \leq \sum_{i=k}^{k+j-1} L^i \Psi(x),\]
which tends to zero as $k \to \infty$. Hence the sequence $\left\{ \left(\frac{mn}{l}\right)^k f\left(\frac{l}{mn} x\right) \right\}$ is Cauchy for all $x \in A$, and so we can define a function $d_1 : A \to X$ by
\[d_1(x) = \lim_{k \to \infty} \left(\frac{mn}{l}\right)^k f\left(\frac{l}{mn} x\right), \quad x \in A.\]
Moreover, letting $k = 0$ and $j \to \infty$ in the last inequality yields
\[\|f(x) - d_1(x)\| \leq \frac{1}{1-L} \Psi(x)\] (2.8)
for all $x \in A$, which yields the estimation (2.4).

Next, let $d_1' : A \to X$ be another additive mapping satisfying the inequality (2.8). Then it is obvious that $d_1'(\left(\frac{l}{mn}\right)^k x) = (\frac{mn}{l})^k d_1'(x)$ and $d_1\left(\left(\frac{l}{mn}\right)^k x\right) = (\frac{mn}{l})^k d_1(x)$ for all $k \in \mathbb{N}$ and all $x \in A$. Thus, we have
\[\|d_1(x) - d_1'(x)\| = (\frac{mn}{l})^k \|d_1\left(\left(\frac{l}{mn}\right)^k x\right) - d_1'\left(\left(\frac{l}{mn}\right)^k x\right)\| \leq (\frac{mn}{l})^k \left\{ \|d_1\left(\left(\frac{l}{mn}\right)^k x\right) - f\left(\left(\frac{l}{mn}\right)^k x\right)\| + \|f\left(\left(\frac{l}{mn}\right)^k x\right) - d_1'\left(\left(\frac{l}{mn}\right)^k x\right)\| \right\} \leq \frac{2}{1-L} (\frac{mn}{l})^k \Psi\left(\left(\frac{l}{mn}\right)^k x\right) \leq \frac{2}{1-L} L^k \Psi(x)\]
for all \(k \in \mathbb{N} \) and all \(x \in A \). Taking the limit as \(k \to \infty \), we lead to the uniqueness of the mapping \(d_1 \) near \(f \) satisfying the inequality (2.8).

It follows from (2.2) and (2.3) that

\[
(\frac{mn}{l})^k \left\| \frac{1}{l} \sum_{i=1}^{l} f \left((\frac{l}{mn})^k x_i \right) + m \sum_{j=1}^{n} f \left((\frac{l}{mn})^k y_j \right) \right\| \\
\leq (\frac{mn}{l})^k \left\| m f \left(\frac{l}{m} \sum_{i=1}^{l} (\frac{l}{mn})^k x_i + \sum_{j=1}^{n} (\frac{l}{mn})^k y_j \right) \right\| \\
+ L^k \varphi(x_1, \ldots, x_l, y_1, \ldots, y_n, 0)
\]

for all \(k \in \mathbb{N} \) and all \(x_1, \ldots, x_l, y_1, \ldots, y_n \in A \). Taking \(k \to \infty \) in the last relation, we see that

\[
\left\| \frac{1}{l} \sum_{i=1}^{l} d_1(x_i) + m \sum_{j=1}^{n} d_1(y_j) \right\| \leq \left\| m d_1 \left(\frac{\sum_{i=1}^{l} x_i}{m} + \sum_{j=1}^{n} y_j \right) \right\|
\]

for all \(x_1, \ldots, x_l, y_1, \ldots, y_n \in A \). This implies that the mapping \(d_1 \) is additive.

Putting \(x_1, \ldots, x_l, y_1, \ldots, y_n := 0 \) in (2.2), then we have

\[
\left\| f(tx) - tf(x) \right\| \leq 0(0, 0, \ldots, 0, x)
\]

for all \(x \in A \) and all \(t \in T_{\frac{1}{l0}}^{l} \). By definition of \(d_1 \) and (2.3), we have

\[
\left\| d_1(tx) - td_1(x) \right\| = \lim_{k \to \infty} \left\| (\frac{mn}{l})^k f \left(\left(\frac{l}{mn} \right)^k tx \right) - t(\frac{mn}{l})^k f \left(\left(\frac{l}{mn} \right)^k x \right) \right\|
\]

\[
\leq \lim_{k \to \infty} L^k \varphi(0, 0, \ldots, 0, x) = 0
\]

for all \(x \in A \) and all \(t \in T_{\frac{1}{l0}}^{l} \). This means that

\[
d_1(tx) = td_1(x)
\]

for all \(x \in A \) and all \(t \in T_{\frac{1}{l0}}^{l} \). Thus, the additive mapping \(d_1 \) is \(C \)-linear by Lemma 2.1.

On the other hand, we have observe by using (2.1) and (2.3) that

\[
\left\| d_1(ab + ba) - d_1(a)b - ad_1(b) - d_1(b)a - bd_1(a) \right\|
\]

\[
= \lim_{k \to \infty} \left\| (\frac{mn}{l})^k \left(f \left(\left(\frac{l}{mn} \right)^k (ab + ba) \right) - f \left(\left(\frac{l}{mn} \right)^k ab \right) - a f \left(\left(\frac{l}{mn} \right)^k b \right) - f \left(\left(\frac{l}{mn} \right)^k ba \right) - b f \left(\left(\frac{l}{mn} \right)^k a \right) \right) \right\|
\]

\[
\leq \lim_{k \to \infty} L^k \varphi(a, b, 0, 0, \ldots, 0) = 0
\]

for all \(a, b \in A \). Therefore, it follows that \(d_1 \) is a Jordan derivation. Then by Lemma 2.1, \(d_1 \) is a derivation. \qed
Remark 2.4. Suppose that a mapping \(f : A \to X \) with \(f(0) = 0 \) satisfies the functional inequalities (2.1), (2.2) for which the control function \(\varphi : A^{l+n} \to \mathbb{R}^+ \) satisfies
\[
\sum_{i=0}^{\infty} \left(\frac{mn}{l} \right)^i \varphi \left(\left(\frac{1}{mn} \right)^i (x_1, \ldots, x_l, y_1, \ldots, y_n, x) \right) < \infty
\]
for all \(x_1, \ldots, x_l, y_1, \ldots, y_n, x \in A \) instead of the condition (2.3). Then it follows from the similar argument to Theorem 2.3 that there exists a unique linear derivation \(d_1 : A \to X \), defined as \(d_1(x) = \lim_{k \to \infty} \left(\frac{1}{mn} \right)^k f((\frac{1}{mn})^k x), (x \in A) \) such that
\[
\| f(x) - d_1(x) \| \leq \sum_{i=0}^{\infty} \left(\frac{mn}{l} \right)^i \Psi \left(\left(\frac{1}{mn} \right)^i x \right)
\]
for all \(x \in A \), where \(\Psi \) is defined as in Theorem 2.3.

Theorem 2.5. Suppose that a mapping \(f : A \to X \) with \(f(0) = 0 \) satisfies the functional inequalities (2.1), (2.2) and there exists a constant \(L \) with \(0 < L < 1 \) for which the perturbing function \(\varphi : A^{l+n} \to \mathbb{R}^+ \) satisfies
\[
\varphi \left(\frac{mn}{l} (x_1, \ldots, x_l, y_1, \ldots, y_n, x) \right) \leq L \cdot \frac{mn}{l} \varphi(x_1, \ldots, x_l, y_1, \ldots, y_n, x) \quad (2.9)
\]
for all \(x_1, \ldots, x_l, y_1, \ldots, y_n, x \in A \). Then there exists a unique linear derivation \(d_2 : A \to X \), defined as \(d_2(x) = \lim_{k \to \infty} \left(\frac{1}{mn} \right)^k f((\frac{1}{mn})^k x), (x \in A) \) such that
\[
\| f(x) - d_2(x) \| \leq \frac{L}{1 - L} \Psi(x) \quad (2.10)
\]
for all \(x \in A \), where \(\Psi \) is given as in Theorem 2.3.

Proof. It follows from the inequality (2.7) that
\[
\left\| \left(\frac{1}{mn} \right)^k f \left(\left(\frac{1}{mn} \right)^k x \right) - \left(\frac{1}{mn} \right)^{k+j} f \left(\left(\frac{1}{mn} \right)^{k+j} x \right) \right\|
\leq \sum_{i=k}^{k+j-1} \left(\frac{mn}{l} \right)^{i+1} \Psi \left(\left(\frac{mn}{l} \right)^{i+1} x \right) \leq \sum_{i=k}^{k+j-1} L^{i+1} \Psi(x),
\]
which tends to zero as \(k \to \infty \).

The remaining proof is similar to the corresponding proof of Theorem 2.3.

Remark 2.6. Suppose that a mapping \(f : A \to X \) with \(f(0) = 0 \) satisfies the functional inequalities (2.1), (2.2) for which the perturbing function \(\varphi : A^{l+n} \to \mathbb{R}^+ \) satisfies
\[
\sum_{i=0}^{\infty} \left(\frac{1}{mn} \right)^i \varphi \left(\left(\frac{mn}{l} \right)^i (x_1, \ldots, x_l, y_1, \ldots, y_n, x) \right) < \infty
\]
for all \(x_1, \ldots, x_k, y_1, \ldots, y_n, x \in A\) instead of the condition (2.9). Then it follows from the similar argument to Theorem 2.5 that there exists a unique linear derivation \(d_2 : A \to X\), defined as \(d_2(x) = \lim_{k \to \infty} \left(\frac{1}{mn} \right)^k f((\frac{mn}{l})^k x), (x \in A)\) such that

\[
\|f(x) - d_2(x)\| \leq \sum_{i=0}^{\infty} \left(\frac{l}{mn} \right)^{i+1} \Psi \left(\left(\frac{mn}{l} \right)^{i+1} x \right)
\]

for all \(x \in A\), where \(\Psi\) is defined as in Theorem 2.3.

Corollary 2.7. Let \(0 < p \neq 1, l \neq mn\) and \(\theta > 0\). If a mapping \(f : A \to X\) with \(f(0) = 0\) satisfies the following functional inequalities

\[
\left\| f(ab + ba) - af(b) - f(a)b - b(f(a) - f(b)a) \right\| \leq \theta \left(\|a\|^p + \|b\|^p \right),
\]

\[
\left\| \sum_{i=1}^{l} f(x_i) + m \sum_{j=1}^{n} f(y_j) + f(tx) - tf(x) \right\| \leq \left\| m f \left(\sum_{i=1}^{l} \frac{x_i}{m} \right) + \sum_{j=1}^{n} y_j \right\| + \theta \left(\sum_{i=1}^{l} \|x_i\|^p + \sum_{j=1}^{n} \|y_j\|^p + \|x\|^p \right)
\]

for all \(a, b, x_1, \ldots, x_l, y_1, \ldots, y_n, x \in A\) and all \(t \in T_1\), then there exists a unique linear derivation \(D : A \to X\), defined as

\[
D(x) = \begin{cases}
\lim_{k \to \infty} \left(\frac{mn}{l} \right)^k f((\frac{mn}{l})^k x), (x \in X), & \text{if } l < mn, p > 1, (or \ l > mn, 0 < p < 1); \\
\lim_{k \to \infty} \left(\frac{mn}{l} \right)^k f((\frac{mn}{l})^k x), (x \in X), & \text{if } l < mn, 0 < p < 1, (or \ l > mn, p > 1),
\end{cases}
\]

such that

\[
\|f(x) - D(x)\| \leq \begin{cases}
\frac{(mn)^{p-1}}{(mn)^{p-1}} \left(\frac{2^{\frac{1}{p}} + 2^{\frac{1}{p}}}{\sqrt[2]{\frac{1}{p} + m l \frac{1}{2}}} \right) + 1 + \frac{\theta}{\left(\frac{mn}{l} \right)^{p-1}} \|x\|^p, & \text{if } l < mn, p > 1, \ (or \ l > mn, 0 < p < 1); \\
\frac{(mn)^{p-1}}{p-1} \left(\frac{2^{\frac{1}{p}} + 2^{\frac{1}{p}}}{\sqrt[2]{\frac{1}{p} + m l \frac{1}{2}}} \right) + 1 + \frac{\theta}{\left(\frac{mn}{l} \right)^{p-1}} \|x\|^p, & \text{if } l < mn, 0 < p < 1, \ (or \ l > mn, p > 1),
\end{cases}
\]

for all \(x \in A\).

Corollary 2.8. Let \(l \neq mn\) and \(\theta > 0\). If a mapping \(f : A \to X\) with \(f(0) = 0\) satisfies the following functional inequalities

\[
\left\| f(ab + ba) - af(b) - f(a)b - b(f(a) - f(b)a) \right\| \leq \theta,
\]

\[
\left\| \sum_{i=1}^{l} f(x_i) + m \sum_{j=1}^{n} f(y_j) + f(tx) - tf(x) \right\| \leq \left\| m f \left(\sum_{i=1}^{l} \frac{x_i}{m} \right) + \sum_{j=1}^{n} y_j \right\| + \theta
\]

...
Almost linear Jordan derivations on C^\ast–algebras

for all $a, b, x_1, \ldots, x_l, y_1, \ldots, y_n, x \in X$ and all $t \in \mathbb{T}^1_{\frac{1}{\infty}}$, then there exists a unique linear derivation $D : A \to X$, defined as

$$D(x) = \begin{cases}
\lim_{k \to \infty} (\frac{mn}{l})^k f((\frac{1}{mn})^k x), (x \in X), & \text{if } l > mn; \\
\lim_{k \to \infty} (\frac{mn}{n})^k f((\frac{1}{mn})^k x), (x \in X), & \text{if } l < mn,
\end{cases}$$

such that

$$\|f(x) - D(x)\| \leq \begin{cases}
\frac{1}{l \cdot mn} (\frac{1}{K} + \frac{1}{T})\theta, & \text{if } l > mn; \\
\frac{1}{mn} (\frac{1}{K} + \frac{1}{T})\theta, & \text{if } l < mn,
\end{cases}$$

for all $x \in A$, where $K := \lceil \frac{1}{2} \rceil + m\lceil \frac{a}{2} \rceil$.

3. Applications

Now, in this part we apply the main theorem to investigate almost linear Jordan derivations from C^\ast–algebras to contractive, weakly amenable or amenable Banach A–modules.

Theorem 3.1. Let A be a finite dimensional C^\ast–algebra and let $f : A \to X$ and $\varphi : A^{l+n+1} \to \mathbb{R}^+$ be mappings satisfying conditions of Theorem 2.3. If

$$\sup\{\|f(x) + \Psi(x)\| : \|x\| \leq 1\} < \infty,$$
(3.1)

then there exist an $x_0 \in X$ and an inner linear derivation defined as $a \to [a, x_0], a \in A$ such that

$$\|f(a) - [a, x_0]\| \leq \frac{1}{1 - L}\Psi(a)$$

for all $a \in A$, where Ψ is defined as in Theorem 2.3.

Proof. By Theorem 2.3, there exists a linear derivation $d_1 : A \to X$ satisfying (2.4). Then by (3.1), d_1 is bounded, and hence d_1 is continuous. On the other hand, we know that every finite dimensional C^\ast–algebra is contractible (see [5]). Then every continuous derivation from A into X is inner. Thus, it follows that d_1 is inner derivation, and so there exists $x_0 \in X$ such that $d_1(a) = ax_0 - x_0a$ for all $a \in A$. \hfill \Box

Note that a Banach A–module X is symmetric if $ax = xa$ for all $a \in A, x \in X$.

Corollary 3.2. Let A be finite dimensional and X be a symmetric A–module. Let $f : A \to X$ and $\varphi : A^{l+n+1} \to \mathbb{R}^+$ be mappings which satisfy (3.1) and conditions in Theorem 2.3. Then

$$\lim_{k \to \infty} (\frac{mn}{l})^k f((\frac{1}{mn})^k a) = 0$$

and

$$\|f(a)\| \leq \frac{1}{1 - L}\Psi(a)$$
(3.2)
for all \(a \in A \), where \(\Psi \) is defined as in Theorem 2.3.

Theorem 3.3. Let \(f : A \to A^* \) and \(\varphi : A^{l+n+1} \to \mathbb{R}^+ \) be mappings which satisfy (3.1) and conditions in Theorem 2.3. Then there exist an \(a' \in A^* \) and an inner linear derivation defined as \(a \to [a, a'], a \in A \) such that

\[
\|f(a) - [a, a']\| \leq \frac{1}{1 - L} \Psi(a)
\]

for all \(a \in A \), where \(\Psi \) is defined as in Theorem 2.3.

Proof. By Theorem 2.3, there exists a linear derivation \(d_1 : A \to A^* \) satisfying (2.4). Then by (3.1), \(d_1 \) is bounded. Hence \(d_1 \) is continuous. On the other hand, we know that every \(C^* \)-algebra is weakly amenable (see [5]). Then every continuous derivation from \(A \) into \(A^* \) is inner. It follows that \(d_1 \) is inner derivation. Then there exists \(a' \in A^* \) such that \(d_1(a) = aa' - a'a \) for all \(a \in A \).

Theorem 3.4. Let \(A \) be a nuclear \(C^* \)-algebra. Let \(f : A \to X^* \) and \(\varphi : A^{l+n+1} \to \mathbb{R}^+ \) be mappings which satisfy (3.1) and conditions in Theorem 2.3. Then there exist an \(x' \in X^* \) and an inner linear derivation defined as \(a \to [a, x'], a \in A \) such that

\[
\|f(a) - [a, x']\| \leq \frac{1}{1 - L} \Psi(a)
\]

for all \(a \in A \), where \(\Psi \) is defined as in Theorem 2.3.

Proof. We know that a \(C^* \)-algebra \(A \) is nuclear if and only if it is amenable (see [5]). Then for each Banach \(A \)-module \(X \), every derivation from \(A \) into dual of \(X \) is inner. The rest of proof is similar to the proof of previous Theorem.

The following is an immediate consequence of Theorem 2.3 and Sakai’s result [25] for almost linear Jordan derivations.

Theorem 3.5. Let \(A \) be a \(C^* \)-algebra with unit. Let \(f : A \to A \) and \(\varphi : A^{l+n+1} \to \mathbb{R}^+ \) be mappings which satisfy (3.1) and conditions in Theorem 2.3. Then there exist an \(x \in A \) and an inner linear derivation defined as \(a \to [a, x], a \in A \) such that

\[
\|f(a) - [a, x]\| \leq \frac{1}{1 - L} \Psi(a)
\]

for all \(a \in A \), where \(\Psi \) is defined as in Theorem 2.3.

ACKNOWLEDGMENT

This work was supported by Basic Research Program through the National Research Foundation of Korea(NRF) funded by the Ministry of Education, Science and Technology (No. 2012R1A1A2008139 and No. 2012-0002410). Corresponding author: hmkim@cnu.ac.kr; madjid.eshaghi@gmail.com.
Almost linear Jordan derivations on C^*-algebras

References

Received: October, 2012