Pseudo-Valuation Maps and Pseudo-Valuation Domains

Waheed Ahmad Khan1 and Abdelghani Taouti2

1Department of Mathematics and Statistics
Caledonian College of Engineering
Sultanate of Oman
sirwak2003@yahoo.com

2Department of Mathematics and Statistics
Caledonian College of Engineering
Sultanate of Oman
ganitaouti@yahoo.com.au

Abstract. Corresponding to a valuation map there exist a valuation domain and vice versa. In this article we established a pseudo-valuation map \(\omega \) from \(K^* \) to \(G^* \) (a partially ordered group equipped with \(*\) property), then constructed a pseudo-valuation domain. We confirmed our map \(\omega \) by using it while generating the few characteristics of Pseudo-valuation domains.

1. Introduction and Preliminaries

Let \(R \) be an integral domain with quotient field \(K \). A prime ideal \(P \) of \(R \) is called strongly prime if \(x, y \in K \) and \(xy \in P \) imply that \(x \in P \) or \(y \in P \) (alternatively \(P \) is strongly prime if and only if \(x^{-1}P \subset P \) whenever \(x \in K \setminus R \) \cite[Definition, page2]{5}. A domain \(R \) is called a pseudo-valuation domain if every prime ideal of \(R \) is a strongly prime \cite[Definition, page2]{5}. It was shown in Hedstrom and Houston \cite[Theorem 1.5(3)]{5} that an integral domain \(R \) is a pseudo-valuation domain if and only if for every nonzero \(x \in K \), either \(x \in R \) or \(ax^{-1} \in R \) for every nonunit \(a \in R \). Every valuation domain is a pseudo-valuation domain \cite[Proposition. 1.1]{5} but converse is not true for example the valuation domain \(V \) of the form \(K + M \), where \(K \) is a field and \(M \) is the maximal ideal of \(V \). If \(F \) is a proper subfield of \(K \), then \(R = F + M \) is a pseudo-valuation domain which is not a valuation domain. Whereas \(R \) and \(V \) have the same quotient field \(L \) and that \(M \) is the maximal ideal of \(R \) \cite[Theorem A, page 560]{8}. A quasi-local domain \((R, M)\) is a pseudo-valuation domain if and only
if \(x^{-1}M \subset M \) whenever \(x \in K \setminus R \) (cf. [5, Theorem 1.4]). Also a Noetherian pseudo-valuation domains have discussed in [5]. A Noetherian domain \(R \) with quotient field \(K \) is a pseudo-valuation domain if and only if \(x^{-1} \in R' \) whenever \(x \in K \setminus R \), where \(R' \) is the integral closure of \(R \) in \(K \) [5, Theorem 3.1]. In [5, Example 3.6] \(\mathbb{Z}[\sqrt{5}]_{(2,1+\sqrt{5})} \) is a Noetherian pseudo-valuation domain which is not a valuation domain and is not in the form of \(D + M \).

There are number of studies on pseudo-valuation domains through different point of views. In [4] the group of divisibility of pseudo-valuation domains has discussed on the basis of semivaluation map. Further [4] deals with the group of divisibility of quasi-local domains, for example see [4, Cor 3.5] and [4, Proposition 3.6].

As every pseudo-valuation domain is necessarily a quasi-local [5, Cor 1.3] and a quasi-local domain is pseudo-valuation domain if and only if its maximal ideal is strongly prime [5, Theorem 1.4]. We give much importance to the local property and strongly prime ideal of the pseudo-valuation domain while constructing the pseudo-value map. Ohm’s [4, Cor 3.5] bring us a clue about group of divisibility of pseudo-valuation domain.

Valuation maps and corresponding valuation domains have been studied in the literature. We established pseudo-value map \(\omega \) and through that map we found pseudo-value group, which is the group of divisibility of pseudo-valuation domains. We proved the characteristics of PVD through that map, while establishing \(\omega \) we ignored the \(GCD \)-behavior of valuation map. During construction of pseudo-value map we observed that \(\omega \) is the map lying between semi-value map and valuation map and consequently the pseudo-value group is lying between semi-value group and value group.

2. PSEUDO-VALUE MAP AND GROUP OF DIVISIBILITY OF PSEUDO-VALUE DOMAIN

2.1. Partially ordered group and \(\ast \) property. Let \(K \) be a field and \(D \) be a subring of \(K \) with identity, \(K^* = K \setminus \{0\} \), the multiplicative group be the group of units of \(K \) and \(U(D) \) represent the units of \(D \), which is subgroup of \(K^* \). \(G = K^*/U(D) \) the factor group with operation addition defined as

\[
xU + yU = xyU,
\]

we define for each \(xU, yU \in G \),

\[
xU \leq yU \text{ if and only if } y/x \in D.
\]

We note that the relation \(\leq \) is partially ordered relation. The positive subset with respect to relation \(\leq \) is

\[
G_+ = \{xU : xU \geq U\} = \{xU : x \in D\}.
\]

The set \(G_+ \subset G \) is a cone i.e a subset of \(G \) containing 0 and closed under addition.
Here we give few terminology from [7] which shall be helpful further.

Definition 1. If \(G \) is a partially ordered group, then a subset \(X \) of \(G \) is convex if \(X \) contains, for each pair of elements \(x, y \) of \(X \) with \(x \leq y \), each element of \(G \) between \(x \) and \(y \) [7, Page 197].

Definition 2. Let \(H \) be a subgroup of a partially ordered abelian group \(G \). \(H \) is an ordered ideal in \(G \) if for every \(x, y \in H \) and \(z \in G \) such that \(x \leq z \leq y \), it follows that \(z \in H \). The family of ordered ideals in a partially ordered abelian group is a complete lattice under the relation of inclusion [6, Cor 1.10].

Definition 3. [7, Page 233] If \(G \) is partially ordered abelian group, then an element \(b \geq 0 \) of \(G \) is bounded if there is an element \(g \) of \(G \) such that \(nb < g \) for each positive integer \(n \). Thus bounded subset of \(G \) form subsemigroup of \(G \) [7, Proposition 19.10].

By adding * property with a partially ordered group let we define below.

2.1.1. * Property: A partially ordered group \(G \) in which each \(g \geq 0 \), either \(g \geq 0 \) or \(g < h \) for all \(h \in G \) with \(h > 0 \).

A partially ordered group \(G \) with * property will be denoted by \(G^* \).

Definition 4. A partially ordered set \(X \) is said to be directed if every two elements have both an upper bound and lower bound. A partially ordered group \(G \) whose partial order is directed is called directed group [1, Page 2].

If a directed partially ordered group \(G \) having * property then we will see later that it become the group of divisibility of pseudo-valuation domain. The above * property has been discussed in [2, Proposition 5.1(b)] to prove that an integral domain a pseudo-valuation domain, but we organized here as a special case of group of divisibility while constructing pseudo-value map. Although the group of divisibility of pseudo-valuation domain has been discussed in the literature but we just considered its only one important characteristic and define pseudo-valuation map.

2.2. **Pseudo-valuation map.** Let \(G^* \) be a partially ordered group as defined above and \(K \) be a field then we have the mapping

Definition 5. Let \(\omega \) be a map from \(K^* \to G^* \), which has the following properties:

(a) \(\omega(xy) = \omega(x) + \omega(y) \).

(b) \(\omega(x - y) \geq \omega(t) \) for each "\(t \)" in \(K^* \), with such that \(\omega(t) \leq \omega(x) \) and \(\omega(t) \leq \omega(y) \),

(c) \(\omega(x) = g \geq 0 \) or \(\omega(x) < \omega(y) = h \), where \(g, h \in G \) and \(h > 0 \), where \(x, y \in K^* \).

The map \(\omega \) is an additive map if it satisfy

(d) \(\omega(x) < \omega(y) \) implies that \(\omega(x + y) = \omega(x) \) for all \(x, y \in K \).
In the above map each $\omega(x) \geq 0$ for all $x \in K \setminus \{0\}$ the map above is closely related to semi-valuation map. In the above definition condition (c) plays an important role, in which the $*$ property of G^* has been observed. We also call ω the pseudo-valuation map.

No doubt (d) implies that it is a quasilocal domain. We shall prove that $D_\omega = \{x \in K : \omega(x) \geq 0\}$ a pseudo-valuation domain and G^* is corresponding pseudo-value group of D_ω. Through the map as in definition 5 a gcd property is exempted, we definitely say that it is non GCD-domain and fulfil quasilocal domains properties too.

Example 1. Let K be any field and $(G^*, +) \cup \{1\}$ be any partially ordered group, define map

$$\omega : K^* \rightarrow (G^*, +) \cup \{1\}$$

$$\omega(x) = \begin{cases} 1, & \text{if } x \neq 0 \\ 0, & \text{if } x = 0 \end{cases}$$

Then it can easily be prove that ω is pseudo valuation.

Remark 1. Let G be a partially ordered group and X be a set of bounded elements of G; X is convex subsemigroup of G. The subgroup $B(G)$ of G generated by X is a convex subgroup of G; if G is lattice ordered, then $B(G)$ is a sublattice subgroup of G [7, Proposition 19.10].

From remark1 corresponding to prime ideal in D a convex set in G^* which generate a convex subgroup of G^*, similarly for a strongly prime ideal P of D.

Remark 2. Let P be a strongly prime ideal in D and G^* be a group of divisibility of D, then there is one to one corresponding between strongly prime ideals and a subsets X in G^* which generate the convex subgroups $B(G)$ as in remark1. By the definition of strongly prime ideal i.e P is strongly prime if and only if $x^{-1}P \subseteq P$ whenever $x \in K \setminus R$ we have convex set C, $x \in G \setminus C$ such that $-x + C \subseteq C$ and also generating a convex subgroup. We call such C a strongly convex set.

Remark 3. We have from [7, Page 250] for a partially ordered group H, the ascending sequence

$$B_1(H) \subseteq B_2(H) \subseteq ...$$

of subgroups of H.

Proposition 1. Let K be a field and D be a subring of K with identity also G^* be the group of divisibility of K with respect to D. Let ω be the map defined in (def 5) then D_ω is an integral domain.

Proof. Clearly $1 \in D_\omega$ and definition5(a) implies that D_ω is closed under multiplication, and if $x, y \in D_\omega$, then $\omega(x - y) \geq \omega(1) = 0$ since $\omega(x) \geq \omega(1)$ and $\omega(y) \geq \omega(1)$. Thus D_ω is a subring of K with identity. The mapping ω is no doubt a group homomorphism and its kernel is $U = \{x \in K : \omega(x) = 0\}$, which shows U is a group of units of D_ω. So D_ω is an integral domain. \qed
If \(\omega \) satisfy additional property \((d)\) of the definition 5, then it is quasi-local domain.

After proving \(D_\omega \) is integral domain now we shall prove that it is pseudo-valuation domain. As we know that \(D_\omega \) is pseudo-valuation domain if each of its prime ideal is strongly prime, also \(D_\omega \) is pseudo-valuation domain if and only if for every nonzero \(x \in K \), either \(x \in D_\omega \) or \(ax^{-1} \in D_\omega \) for every nonunit \(a \in D_\omega \).

Proposition 2. \(D_\omega = \{ x \in K : \omega(x) \geq 0 \} \) is a pseudo-valuation domain.

Proof. Let us suppose that \(x \in K \) and \(x \notin D_\omega \) then \(\omega(x) < 0 \), so \(\omega(x^{-1}) = -\omega(x) > 0 \Rightarrow x^{-1} \in D_\omega \) and hence \(ax^{-1} \in D_\omega \) for every nonunit \(a \in D_\omega \), as \(D_\omega \) is an integral domain. On the other hand if \(x \in K \) then \(\omega(x) \geq 0 \) or \(\omega(x) < \omega(a) = h \), where \(g, h \in G \) and \(h > 0 \). If \(\omega(x) \geq 0 \), then we are done otherwise there exist \(\omega(a) > \omega(x) \) such that \(\omega(ax^{-1}) = \omega(a) - \omega(x) \geq 0 \Rightarrow ax^{-1} \in D_\omega \). Both the cases shows that \(D_\omega \) is pseudo-valuation domain. \(\square \)

Again let us try to prove \(D_\omega \) is pseudo-valuation domain by its characteristics as every pseudo-valuation domain is necessarily local.

Proposition 3. \(D_\omega \) is a local (non-noetherian) and a pseudo-valuation domain.

Proof. Through that map \(\omega \) we will first prove the necessarily condition of pseudo-valuation domain i.e local, and then prove the maximal ideal is strongly prime. Let us suppose that \(D_\omega \) has two maximal ideals \(M \) and \(N \) and corresponding to these ideal there are two convex subgroups \(C_1 \) and \(C_2 \) generated by the bounded sets \(X_1 \) and \(X_2 \), then choose \(x \in M \setminus N \) and \(y \in N \setminus M \) also \(x \in X_1 \setminus X_2 \) and \(y \in X_2 \setminus X_1 \). Since \(\omega \) is also a homomorphism hence \(X_1 \) correspond to \(M \) and \(X_2 \) correspond to \(N \). Let \(\omega(xy^{-1}) = g \) and \(\omega(y) = h > 0 \) then clearly \(g \notin 0 \) and \(g \notin h \), while \(h > 0 \) which contradict the \((e) \) of definition 5) i.e the * property, So \(D_\omega \) must be local. Let \(x \in K \setminus D_\omega \) and \(m \in M \subset D_\omega \) since \(\omega(x) \notin 0 \) because \(x \notin D_\omega \), then again \(\omega(x) < \omega(m) \) since \(\omega(m) > 0 \). Thus \(x^{-1}m \in M \) and so \(x^{-1}M \subset M \). Hence \(D_\omega \) is a pseudo-valuation domain. \(\square \)

So we may discuss the pseudo-valuation domain through map \(\omega \), as valuation domain has been studied through valuation map.

Remark 4. Clearly directed group \(G^* \) is the group of divisibility of pseudo-valuation domain \(D \) with quotient field \(K \). Hence every partially ordered group with * property is the group of divisibility of a \(PVD \) and \(G^* \) need not be a torsion free. In other words * property shows that \(A \) is a \(PVD \) if and only if its group of divisibility is a lexicographic extension of a trivially ordered group by a totally ordered group.

The above Remark is confirm by [2, Page 462].
If D is PVD then its maximal fractional ideals and maximal ideals are comparable i.e let D be a local domain with maximal ideal M and quotient field K which is a PVD and $M : M$ is a valuation overring of D with maximal ideal M. Then we have lexicographically exact sequence which relates the group of divisibility of D and group of divisibility of $V = M : M$ see [4, Page 577]. Now through map ω we describe the valuation overring of PVD's.

Proposition 4. Let D be a domain with quotient field K with group of divisibility $G = K^*/U(D)$ and ω be the defined above, then the following are equivalent

(a) D is local with $M : M$ is a valuation domain,
(b) G is satisfying $*$ property.

Proof. (a) \Rightarrow (b). Corresponding to maximal ideal M in D there is maximum convex set in G which generate maximal convex subgroup. Let $\omega(x) = xU = g \neq 0 \in G$ and $h > 0$, if $g \not< h$, then for some $h \in G$ with $h > 0$, then there is $\omega(x^{-1}) = -xU \in G$ and $\omega(m) = c \in C$ (maximal convex subgroup) such that

$$\omega(x^{-1}m) = \omega(x^{-1}) + \omega(m) = -\omega(x) + \omega(m) \notin C.$$

$$\Rightarrow x^{-1}m \notin M \text{ thus } xM \subset M$$

Hence $g + c > 0$ for all $c \in G$ with $c > 0$, or from $g + c > 0$ we have $g > c$ for all $c \in G$ with $c < 0$.

(b) \Rightarrow (a). D is clearly local prove is similar to proposition3, the rest of proof if followed as (a) \Rightarrow (b).

As it has been demonstrated in several ways that a valuation domain is a pseudo-valuation domain. In following we do it through newly established pseudo-valuation map but here we shall consider G^* a totally ordered group instead of partially ordered.

Remark 5. It is quite clear that when we will talk about valuation domain then G^* should be a totally ordered.

Proposition 5. Every valuation domain is a pseudo-valuation domain.

Proof. Let V a valuation domain and P be a prime ideal in V. Let us suppose that our defined group G^* is extend to linear order then there is each convex subgroup of G correspond to prime ideal in V. This reversible correspondence is such that if H is convex in G then $\omega^{-1}((G\uparrow H)U\{0\})$ is prime ideal in V by [7, Page 198, 199]. Now as linearly ordered group enjoy the partial ordering properties thus we have to show that each prime ideal in V is strongly prime. To prove $\omega^{-1}((G\uparrow H)U\{0\})$ is prime ideal is similar to that [3, Proposition 3.3]. To prove it is strongly prime let P be a prime ideal in V. Suppose $xy \in P$ where $x, y \in K$ the quotient field of V. If both $x, y \in V$ then we are done by condition (1) of map ω in (definition 5). Suppose $y \notin V$, then there exist $y^{-1} \in V \subset K$, hence $x = yx.y^{-1} \in P \Rightarrow x \in P$. Now due to reverse correspondent and map ω from K to group of divisibility and (definition 5) the result follows. \square
Pseudo-valuation maps and pseudo-valuation domains

References

Received: October, 2012