Hermite-Hadamard-like Type Integral Inequalities for Functions whose Derivatives of n-th Order are Preinvex

Jaekeun Park

Department of Mathematics
Hanseo University, Daegok-ri, Seosan-si
Choongchungnam-do, 356-706, Korea
jkpark@hanseo.ac.kr

Copyright © 2013 Jaekeun Park. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Abstract

In this article, we establish some estimates of Hermite-Hadamard-like type integral inequalities for functions whose n-times derivatives in absolute value at certain powers are preinvex.

Mathematics Subject Classification: 26A51, 26D15

Keywords: Hermite-Hadamard-type inequality, Preinvexity, Hölder’s inequality

1 Introduction

The following definition is well known in the literature: Let I be an interval in R. Then $f : I \to R$ is said to be convex on I if

\[f(tx + (1-t)y) \leq tf(x) + (1-t)f(y) \]

holds for all $x, y \in I$ and $t \in [0, 1]$.

Many inequalities have been established for convex functions but the most famous is the Hermite-hadamard inequality, due to its rich geometrical significance and applications, which is stated as follows: Let $f : I \subseteq R \to R$ be a
convex function and \(a, b \in I\) with \(a < b\). Then
\[
f\left(\frac{a + b}{2}\right) \leq \frac{1}{b - a} \int_a^b f(x) \, dt \leq \frac{f(a) + f(b)}{2}.
\]

Hadamard’s inequality for convex functions has received renewed attention in recent years and a remarkable variety of refinements and generalizations have been found in [7, 9, 11, 12, 16] and references therein.

In recent years, several refinements and generalizations have been considered for classical convexity [16]. A significant generalization of convex functions is that of invex functions introduced by Hanson in [6].

Weir and Mond [17] introduced the concept of preinvex functions and applied it to the establishment of the sufficient optimality conditions and duality in nonlinear programming.

Noor [12] has established some Hermite-Hadamard type inequalities for preinvex functions. In recent papers, Noor and Barani et al. in [5, 12] presented some estimates of the right hand side of a Hermite-Hadamard type inequality in which some preinvex functions are involved.

Definition 1. A set \(K \subseteq R\) is said to be **invex** with respect to the map \(\eta : K \times K \to R\), if for any \(x, y \in K\) and \(t \in [0, 1]\), \(x + t\eta(y, x) \in K\).

It is obvious that every convex set is invex with respect to the map \(\eta(x, y) = y - x\), but there exist invex sets which are not convex [10].

Definition 2. Let \(K \subseteq R\) be an invex set with respect to the map \(\eta : K \times K \to R\). Then the function \(f : K \to R\) is said to be **preinvex** with respect to \(\eta\), if
\[
f(a + t\eta(b, a)) \leq (1 - t)f(a) + tf(b)
\]
for any \(a, b \in K\) and \(t \in [0, 1]\).

For the refinement and generalizations of preinvex functions, you may see [1, 8, 10, 14, 16, 18, 19]. Recently, Noor [3, 4, 12] has obtained the following Hermite-Hadamard inequalities for the preinvex functions:

Theorem 1.1. For an interval \([a, a + \eta(b, a)]\) on the real line \(R\), let \(f : [a, a + \eta(b, a)] \to R_+\) be a preinvex function on an interior \(K^0\) of the interval \(K\) and \(a, b \in K^0\) with \(a < a + \eta(b, a)\). Then the inequality holds:
\[
f\left(a + \frac{\eta(b, a)}{2}\right) \leq \frac{1}{\eta(b, a)} \int_a^{a + \eta(b, a)} f(t) \, dt \leq \frac{f(a) + f(a + \eta(b, a))}{2}.
\]
In [5], Barani et al. introduced some generalizations of Hermite-Hadamard type inequality for functions whose second derivatives absolute values are preinvex.

Theorem 1.2. Let $K \subseteq \mathbb{R}$ be an open invex subset with respect to $\eta : K \times K \to \mathbb{R}$. Suppose that $f : K \to \mathbb{R}$ is a differentiable function. If $|f'|$ is preinvex on K, then for any $a, b \in K$ with $\eta(b, a) \neq 0$ the following inequality holds:

$$
\left| \frac{f(a) + f(a + \eta(b, a))}{2} - \frac{1}{\eta(b, a)} \int_a^{a + \eta(b, a)} f(t) dt \right|
\leq \frac{\eta(b, a)}{8} \left\{ |f'(a)| + |f'(a)| \right\}.
$$

(1)

Theorem 1.3. Let $K \subseteq \mathbb{R}$ be an open invex subset with respect to $\eta : K \times K \to \mathbb{R}$. Suppose that $f : K \to \mathbb{R}$ is a differentiable function. Assume $p \in \mathbb{R}$ with $p > 1$. If $|f'|^\frac{p}{p-1}$ is preinvex on K, then for any $a, b \in K$ with $\eta(b, a) \neq 0$ the following inequality holds:

$$
\left| \frac{f(a) + f(a + \eta(b, a))}{2} - \frac{1}{\eta(b, a)} \int_a^{a + \eta(b, a)} f(t) dt \right|
\leq \frac{\eta(b, a)}{2(p + 1)^\frac{p}{p-1}} \left[\frac{1}{2} \left\{ |f'(a)|^\frac{p}{p-1} + |f'(b)|^\frac{p}{p-1} \right\} \frac{p-1}{p} \right].
$$

(2)

Theorem 1.4. Let $K \subseteq \mathbb{R}$ be an open invex subset with respect to $\eta : K \times K \to \mathbb{R}$. Suppose that $f : K \to \mathbb{R}$ is a differentiable function. Assume $p \in \mathbb{R}$ with $p > 1$. If $|f'|^\frac{p}{p-1}$ is preinvex on K, then for any $a, b \in K$ with $\eta(b, a) \neq 0$ the following inequality holds:

$$
\left| \frac{f(a) + f(a + \eta(b, a))}{2} - \frac{1}{\eta(b, a)} \int_a^{a + \eta(b, a)} f(t) dt \right|
\leq \frac{\eta(b, a)}{2(p + 1)^\frac{p}{p-1}} \left[\sup \left\{ |f'(a)|^\frac{p}{p-1}, |f'(b)|^\frac{p}{p-1} \right\} \right]^\frac{p-1}{p}.
$$

(3)

The main aim of this paper is to establish new generalized similar inequalities concerning Hermite-Hadamard-like and Simpson-like type inequality for the class of differentiable functions whose n-times derivatives at certain powers are preinvex functions.
2 Some new Hermite-Hadamard-type inequalities

To establish some new Hermite-Hadamard type inequalities for s-convex functions in the second sense, we need the following lemma.

Lemma 1. Let $K \subseteq R$ be an invex set with respect to the map $\eta : K \times K \to R$ and, $\eta(b,a) \neq 0$ with $0 \leq a \leq a + \eta(b,a) < \infty$ for all $a,b \in K$ with $a < b$. Suppose that $f : K \to R$ is an n-times differentiable function on the interior K^0 of K such that $f^{(n)}(\cdot) \in L([a,a + \eta(b,a)])$. If $|f^{(n)}|$ is preinvex with respect to η on K, then the following identity

$$R^n_a(f, \eta, n) = \frac{1}{\eta(b,a)} \int_a^{a+\eta(b,a)} f(u)du - \frac{1}{2} \left\{ f(r) + f(2a + \eta(b,a) - r) \right\}$$

$$+ \sum_{k=2}^n \frac{(-1)^{k+1}}{k!} \left\{ \frac{(r - a - \eta(b,a))^k - (r - a - \frac{1}{2}\eta(b,a))^k}{\eta(b,a)} \right\}$$

$$\times \left\{ f^{(k-1)}(r) + (-1)^{k+1} f^{(k-1)}(2a + \eta(b,a) - r) \right\}$$

$$= \frac{\eta^n(b,a)}{n!} \int_0^1 k_n(t)f^{(n)}(a + t\eta(b,a))dt,$$ \hspace{1cm} (4)

holds for any $r \in [a + \frac{1}{2}\eta(b,a), a + \eta(b,a)]$ with $\eta(b,a) > 0$, where

$$k_n(t) = \begin{cases} t^n, & 0 \leq t \leq \frac{a + \eta(b,a) - r}{\eta(b,a)} \\ (t - \frac{1}{2})^n, & \frac{a + \eta(b,a) - r}{\eta(b,a)} \leq t \leq \frac{r - a}{\eta(b,a)} \\ (t - 1)^n, & \frac{r - a}{\eta(b,a)} \leq t \leq 1. \end{cases}$$

Proof. By integration by parts, this equality (4) is proved by the mathematical induction. \Box

Now we turn our attention to establish inequalities of Hermit-Hadamard type for differentiable preinvex functions.

Theorem 2.1. Let $K \subseteq R$ be an invex set with respect to the map $\eta : K \times K \to R$ and, $\eta(b,a) \neq 0$ with $0 \leq a \leq a + \eta(b,a) < \infty$ for all $a,b \in K$ with $a < b$. Suppose that $f : K \to R$ is an n-times differentiable function on the interior K^0 of K such that $f^{(n)}(\cdot) \in L([a,a + \eta(b,a)])$. If $|f^{(n)}|$ is preinvex with respect to η on K, then the following inequality

$$\left| R^n_a(f, \eta, n) \right| \leq \frac{\eta^n(b,a)}{n!} \left\{ \mu_{11} + \mu_{12} + \mu_{13} + \mu_{14} \right\} \left\{ |f^{(n)}(a)| + |f^{(n)}(b)| \right\},$$ \hspace{1cm} (5)
holds for any \(r \in [a + \frac{1}{2} \eta(b, a), a + \eta(b, a)] \) with \(\eta(b, a) > 0 \), where

\[
\mu_{11} = \frac{(a + \eta(b, a) - r)^{n+1}}{\eta^{n+2}(b, a)(n+1)(n+2)} \{ (n+1)(r-a) \},
\]

\[
\mu_{12} = \frac{(r - a - \frac{1}{2} \eta(b, a))^n}{\eta^{n+2}(b, a)(n+1)(n+2)} \{ \frac{1}{2}(2n+3) \eta(b, a) - (n+1)(r-a) \},
\]

\[
\mu_{13} = \frac{(r - a - \frac{1}{2} \eta(b, a))^n}{\eta^{n+2}(b, a)(n+1)(n+2)} \{ \frac{1}{2}(2n+3) \eta(b, a) - (n+1)(r-a) \},
\]

\[
\mu_{14} = \frac{a + \eta(b, a) - r}{\eta^{n+2}(b, a)(n+2)},
\]

(6)

Proof. Suppose that \(a, a + \eta(b, a) \in S \). Since \(S \) is an invex set with respect to \(\eta \), we have \(a + t \eta(b, a) \in S \) for any \(t \in [0, 1] \). By Lemma 1, we have

\[
|I_a^b(f, \eta, n)|
\]

\[
= \frac{1}{\eta(b, a)} \int_a^{a+\eta(b,a)} f(u)du - \frac{f(r) + f(2a + \eta(b, a) - r)}{2}
\]

\[
+ \frac{1}{\eta(b, a)} \sum_{k=2}^{n} (-1)^{k+1} \frac{k!}{k!} \left\{ (r - a - \eta(b, a))^k - (r - a - \frac{\eta(b, a)}{2})^k \right\}
\]

\[
\times \left\{ f^{(k-1)}(r) + (-1)^{k+1} f^{(k-1)}(2a + \eta(b, a) - r) \right\}
\]

\[
= \frac{\eta^n(b, a)}{n!} \int_0^1 \left| k_n(t) \right| \left| f^{(n)}(a + t \eta(b, a)) \right| dt
\]

\[
\leq \frac{\eta^n(b, a)}{n!} \left[\int_0^{a+\eta(b,a)-r} \eta^{n-1}(b, a) t^n f^{(n)}(a + t \eta(b, a)) dt \right]
\]

\[
+ \int_{\frac{a+\eta(b,a)-r}{\eta(b,a)}}^{\frac{1}{2}} (t - \frac{1}{2})^n f^{(n)}(a + t \eta(b, a)) dt
\]

\[
+ \int_{\frac{1}{2}}^{\frac{a+\eta(b,a)}{\eta(b,a)}} (t - \frac{1}{2})^n f^{(n)}(a + t \eta(b, a)) dt
\]

\[
+ \int_{\frac{a+\eta(b,a)}{\eta(b,a)}}^{1} (1 - t)^n f^{(n)}(a + t \eta(b, a)) dt.
\]

(7)
Making use of the preinvexity of $|f^{(n)}|$ on $[a, a + \eta(b, a)]$ for $n \in N$, we get

\[(a) \int_0^{\frac{a + \eta(b, a) - r}{\eta(b, a)}} t^n \left| f^{(n)}(a + t\eta(b, a)) \right| dt \leq \int_0^{\frac{a + \eta(b, a) - r}{\eta(b, a)}} t^n \left\{ (1 - t)\left| f^{(n)}(a) \right| + t\left| f^{(n)}(b) \right| \right\} dt \]

\[= \mu_{11} |f^{(n)}(a)| + \nu_{11} |f^{(n)}(b)|. \tag{8} \]

\[(b) \int_{\frac{a + \eta(b, a) - r}{\eta(b, a)}}^{\frac{1}{2}} \left(\frac{1}{2} - t \right)^n \left| f^{(n)}(a + t\eta(b, a)) \right| dt \leq \mu_{12} |f^{(n)}(a)| + \nu_{12} |f^{(n)}(b)|. \tag{9} \]

\[(c) \int_{\frac{1}{2}}^{\frac{1}{2} - \frac{r}{\eta(b, a)}} \left(t - \frac{1}{2} \right)^n \left| f^{(n)}(a + t\eta(b, a)) \right| dt \leq \mu_{13} |f^{(n)}(a)| + \nu_{13} |f^{(n)}(b)|. \tag{10} \]

\[(d) \int_{\frac{1}{2} - \frac{r}{\eta(b, a)}}^{1} (1 - t)^n \left| f^{(n)}(a + t\eta(b, a)) \right| dt \leq \mu_{14} |f^{(n)}(a)| + \nu_{14} |f^{(n)}(b)|. \tag{11} \]

By substituting (8)-(11) in (7), we get the desired result (5). \hfill \square

Corollary 2.1. Under the assumptions in Theorem 2.1 with $r = a + \eta(b, a)$, we have

\[
\left| I_a^b(f, \eta, n) \right| = \left| \frac{1}{\eta(b, a)} \int_a^{a + \eta(b, a)} f(u) du - \frac{f(a) + f(a + \eta(b, a))}{2} \right|

+ \sum_{k=2}^{n} \frac{(-1)^k \eta^{k-1}(b, a)}{2^k k!} \left\{ f^{(k-1)}(a + \eta(b, a)) + (-1)^k f^{(k-1)}(a) \right\}

\leq \frac{\eta^n(b, a)}{2^{n+1} (n+1)!} \left\{ \left| f^{(n)}(a) \right| + \left| f^{(n)}(b) \right| \right\}.
\]
Theorem 2.2. Let $K \subseteq R$ be an invex set with respect to the map $\eta : K \times K \to R$ and, $\eta(b, a) \neq 0$ with $0 \leq a \leq a + \eta(b, a) < \infty$ for all $a, b \in S$ with $a < b$. Suppose that $f : K \to R$ is an n-times differentiable function on the interior K^0 of K such that $f^{(n)} \in L([a, a + \eta(b, a)])$. Assume $q \in R$ with $q > 1$ and $\frac{1}{p} + \frac{1}{q} = 1$. If $| f^{(n)} |^q$ is preinvex with respect to η on K, then the following inequality holds for any $r \in [a + \frac{1}{2}\eta(b, a), a + \eta(b, a)]$ with $\eta(b, a) > 0$, where

$$
| I_a^b(f, \eta, n) | \leq \frac{\eta^n(b, a)}{n!} \left[M_{11}^{\frac{1}{p}} \left(\mu_{21} f^{(n)}(a) + \mu_{24} f^{(n)}(b) \right)^q + M_{12}^{\frac{1}{p}} \left(\mu_{22} f^{(n)}(a) + \mu_{23} f^{(n)}(b) \right)^q \right]^\frac{1}{q},
$$

where

$$
\mu_{21} = \frac{\eta^2(b, a) - (r - a)^2}{2\eta^2(b, a)},
$$

$$
\mu_{22} = \frac{4(r - a)^2 - \eta^2(b, a)}{8\eta^2(b, a)},
$$

$$
\mu_{23} = \frac{\eta^2(b, a) - 4(r - (a + \eta(b, a)))^2}{8\eta^2(b, a)},
$$

$$
\mu_{24} = \frac{(a + \eta(b, a) - r)^2}{2\eta^2(b, a)},
$$

and

$$
M_{11} = \frac{1}{np + 1} \left(\frac{a + \eta(b, a) - r}{\eta(b, a)} \right)^{np+1},
$$

$$
M_{12} = \frac{1}{np + 1} \left(\frac{r - (a + \frac{1}{2}\eta(b, a))}{\eta(b, a)} \right)^{np+1}.
$$

Proof. Suppose that $a, a + \eta(b, a) \in K$. Since K is invex with respect to η, for any $t \in [0, 1]$, we have $a + t\eta(b, a) \in S$. By Lemma 1 and Hölder integral inequality for $q > 1$, we have

$$
\frac{n!}{\eta^n(b, a)} | I_a^b(f, \eta, n) |
$$
\[\begin{align*}
&\leq \int_0^a \left(\frac{a + \eta(b,a) - r}{\eta(b,a)} \right)^r t^n \left| f^{(n)}(a + t\eta(b,a)) \right| dt \\
&+ \int_0^{\frac{1}{2}} \left(\frac{1}{2} - t \right)^n \left| f^{(n)}(a + t\eta(b,a)) \right| dt \\
&+ \int_{\frac{1}{2}}^1 (t - 1)^n \left| f^{(n)}(a + t\eta(b,a)) \right| dt \\
&+ \int_{\frac{1}{2}}^1 (1 - t)^n \left| f^{(n)}(a + t\eta(b,a)) \right| dt \\
&\leq \left(\int_0^a \left(\frac{a + \eta(b,a) - r}{\eta(b,a)} \right)^r t^n \left| f^{(n)}(a + t\eta(b,a)) \right|^q dt \right)^{\frac{1}{q}} \\
&+ \left(\int_0^{\frac{1}{2}} \left(\frac{1}{2} - t \right)^n \left| f^{(n)}(a + t\eta(b,a)) \right|^q dt \right)^{\frac{1}{q}} \\
&+ \left(\int_{\frac{1}{2}}^1 (t - 1)^n \left| f^{(n)}(a + t\eta(b,a)) \right|^q dt \right)^{\frac{1}{q}} \\
&+ \left(\int_{\frac{1}{2}}^1 (1 - t)^n \left| f^{(n)}(a + t\eta(b,a)) \right|^q dt \right)^{\frac{1}{q}}. \tag{14}
\end{align*}\]

Making use of the preinvexity of \(f^{(n)} \) \(q \)-on \([a, a + \eta(b,a)]\), for any \(t \in [0, 1] \) we know that
\[
\left| f^{(n)}(a + t\eta(b,a)) \right|^q \leq (1 - t) \left| f^{(n)}(a) \right|^q + t \left| f^{(n)}(b) \right|^q,
\]
which implies that
\[
(a) \quad \int_0^a \left(\frac{a + \eta(b,a) - r}{\eta(b,a)} \right)^r \left| f^{(n)}(a + t\eta(b,a)) \right|^q dt \\
\leq \mu_{21} \left| f^{(n)}(a) \right|^q + \mu_{24} \left| f^{(n)}(b) \right|^q \tag{15}
\]
\[
(b) \quad \int_0^{\frac{1}{2}} \left(\frac{1}{2} - t \right)^n \left| f^{(n)}(a + t\eta(b,a)) \right|^q dt \\
\leq \mu_{22} \left| f^{(n)}(a) \right|^q + \mu_{23} \left| f^{(n)}(b) \right|^q \tag{16}
\]
\[(c) \quad \int_{a}^{r} \left| f^{(n)}(a + t\eta(b, a)) \right|^q \, dt \]
\[\leq \mu_{23} \ | f^{(n)}(a) |^q + \mu_{22} \ | f^{(n)}(b) |^q \quad (17) \]

\[(d) \quad \int_{\frac{r-a}{\eta(b,a)}}^{1} \left| f^{(n)}(a + t\eta(b, a)) \right|^q \, dt \]
\[\leq \mu_{24} \ | f^{(n)}(a) |^q + \mu_{21} \ | f^{(n)}(b) |^q . \quad (18) \]

By the simple calculations, we have

\[(i) \quad \int_{0}^{\frac{a+\eta(b,a)-r}{\eta(b,a)}} t^{np} \, dt = \int_{\frac{r-a}{\eta(b,a)}}^{1} (1-t)^{np} \, dt = M_{11}, \quad (19) \]

\[(ii) \quad \int_{\frac{a+\eta(b,a)-r}{\eta(b,a)}}^{\frac{1}{2}} (\frac{1}{2} - t)^{np} \, dt = \int_{\frac{1}{2}}^{\frac{r-a}{\eta(b,a)}} (t - \frac{1}{2})^{np} \, dt = M_{12}. \quad (20) \]

By substituting (15)-(20) in (14), we get the desired result.

\[\Box \]

Corollary 2.2. Under the assumptions in Theorem 2.2 with \(r = a + \eta(b, a) \), we have

\[\left| I_a^b(f, \eta, n) \right| = \left| \frac{1}{\eta(b,a)} \int_0^{a+\eta(b,a)} f(u) \, du - \frac{f(a) + f(a + \eta(b,a))}{2} + \sum_{k=2}^{n} \frac{(-1)^k \eta^{k-1}(b,a)}{2^k k!} \left\{ f^{(k-1)}(a + \eta(b,a)) + (-1)^k f^{(k-1)}(a) \right\} \right| \]
\[\leq \frac{\eta^n(b,a)}{n!} \left(\frac{1}{2^{np+1}(np+1)} \right)^\frac{1}{p} \left(\frac{1}{8} \right)^\frac{1}{q} \left\{ | f^{(n)}(a) | + | f^{(n)}(b) | \right\}. \]

Corollary 2.3. Under the assumptions in Theorem 2.2 with \(r = a + \frac{1}{2} \eta(b, a) \),
we have
\[
\left| I_a^b(f, \eta, n) \right| = \left| \frac{1}{\eta(b, a)} \int_a^{a+\eta(b,a)} f(u) du - f(a + \frac{1}{2} \eta(b, a)) \right| \\
- \Sigma_{k=2}^{n} \frac{\eta^{k-1}(b, a)}{2^k k!} f^{(k-1)}(a + \frac{1}{2} \eta(b, a)) \right| \\
\leq \frac{\eta^n(b, a)}{n!} \left(\frac{1}{2^{np+1}(np+1)} \right)^{\frac{1}{q}} \\
\times \left\{ \left(\frac{3}{8} f^{(n)}(a) \right)^q + \frac{1}{8} \left| f^{(n)}(b) \right|^q \right\}^{\frac{1}{q}} \\
+ \left(\frac{1}{8} f^{(n)}(a) \right)^q + \frac{3}{8} \left| f^{(n)}(b) \right|^q \right\}^{\frac{1}{q}}.
\]

Theorem 2.3. Let \(K \subseteq R \) be an invex set with respect to the map \(\eta : K \times K \to R \) and, \(\eta(b, a) \neq 0 \) with \(0 \leq a \leq a + \eta(b, a) < \infty \) for all \(a, b \in K \) with \(a < b \). Suppose that \(f : K \to R \) is a differentiable function on the interior \(K^0 \) of \(K \) such that \(f' \in L([a, a + \eta(b, a)]) \). Assume \(q \in R \) with \(q > 1 \) and \(\frac{1}{p} + \frac{1}{q} = 1 \). If \(| f' |^q \) is preinvex with respect to \(\eta \) on \(K \), then the following inequality
\[
\left| I_a^b(f, \eta, n) \right| \\
\leq \frac{\eta^n(b, a)}{n!} \left[M_{31}^{\frac{1}{q}} \left(\mu_{31} \left| f^{(n)}(a) \right|^q + \mu_{34} \left| f^{(n)}(b) \right|^q \right) \right]^{\frac{1}{q}} \\
+ M_{32}^{\frac{1}{q}} \left(\mu_{32} \left| f^{(n)}(a) \right|^q + \mu_{33} \left| f^{(n)}(b) \right|^q \right)^{\frac{1}{q}} \\
+ M_{33}^{\frac{1}{q}} \left(\mu_{33} \left| f^{(n)}(a) \right|^q + \mu_{32} \left| f^{(n)}(b) \right|^q \right)^{\frac{1}{q}} \\
+ M_{34}^{\frac{1}{q}} \left(\mu_{34} \left| f^{(n)}(a) \right|^q + \mu_{31} \left| f^{(n)}(b) \right|^q \right)^{\frac{1}{q}}
\]
holds, where
\[
\mu_{31} = \left(a + \eta(b, a) - r \right)^{n+1} \left\{ \frac{1}{n+1} \left(\frac{a + \eta(b, a) - r}{\eta(b, a)} \right) \right\}, \\
\mu_{32} = \left(r - a - \frac{1}{2} \eta(b, a) \right)^{n+1} \left\{ \left(n+1 \right) \left(\frac{a + \eta(b, a) - (2n+3)a}{2(n+2)\eta^{n+2}(b, a)} \right) \right\}, \\
\mu_{33} = \left(r - a - \frac{1}{2} \eta(b, a) \right)^{n+1} \left\{ \left(\frac{1}{2} (2n+3)(a + \eta(b, a)) - a \right) - (n+1) \frac{a + \eta(b, a) - (2n+3)a}{2(n+2)\eta^{n+2}(b, a)} \right\}, \\
\mu_{34} = \left(a + \eta(b, a) - r \right)^{n+2} \left(\frac{a + \eta(b, a) - r}{\eta(b, a)} \right) \\
\]
and
\[
M_{31} = \frac{1}{n+1} \left(\frac{a + \eta(b,a) - r}{\eta(b,a)} \right)^{n+1},
\]
\[
M_{32} = \frac{1}{n+1} \left(\frac{r - (a + \frac{1}{2} \eta(b,a))}{\eta(b,a)} \right)^{n+1}.
\]

Proof. Suppose that \(a, a + \eta(b,a) \in K \). Since \(K \) is invex with respect to \(\eta \), for any \(t \in [0,1] \), we have \(a + t\eta(b,a) \in K \). Making use of the preinvexity of \(|f^{(n)}|^q \) on \([a, a + \eta(b,a)]\), Lemma 1 and Hölder’s inequality, we get
\[
\frac{n!}{\eta^n(b,a)} |I_2^\beta(f, \eta, n)|
\leq \left(\int_0^{\frac{a + \eta(b,a) - r}{\eta(b,a)}} t^n \, dt \right)^{\frac{1}{p}} \left(\int_0^{\frac{a + \eta(b,a) - r}{\eta(b,a)}} t^n |f^{(n)}(a + t\eta(b,a))| \, dt \right)^{\frac{1}{q}}
\]
\[
+ \left(\int_{\frac{a + \eta(b,a) - r}{\eta(b,a)}}^{\frac{1}{2}} \frac{1}{2} - t^n \, dt \right)^{\frac{1}{p}} \left(\int_{\frac{a + \eta(b,a) - r}{\eta(b,a)}}^{\frac{1}{2}} \frac{1}{2} - t^n |f^{(n)}(a + t\eta(b,a))| \, dt \right)^{\frac{1}{q}}
\]
\[
+ \left(\int_{\frac{a + \eta(b,a) - r}{\eta(b,a)}}^{1} (1 - t)^n \, dt \right)^{\frac{1}{p}} \left(\int_{\frac{a + \eta(b,a) - r}{\eta(b,a)}}^{1} (1 - t)^n |f^{(n)}(a + t\eta(b,a))| \, dt \right)^{\frac{1}{q}}. \tag{21}
\]
By the simple calculations, we have
\[
(i) \int_0^{\frac{a + \eta(b,a) - r}{\eta(b,a)}} t^n \, dt = \int_{\frac{a + \eta(b,a) - r}{\eta(b,a)}}^{1} (1 - t)^n \, dt = M_{31}, \tag{22}
\]
\[
(ii) \int_{\frac{a + \eta(b,a) - r}{\eta(b,a)}}^{\frac{1}{2}} \frac{1}{2} - t^n \, dt = \int_{\frac{a + \eta(b,a) - r}{\eta(b,a)}}^{\frac{1}{2}} (t - \frac{1}{2})^n \, dt = M_{32}. \tag{23}
\]
Making use of the preinvexity of \(|f^{(n)}|^q \) on \([a, a + \eta(b,a)]\), for any \(t \in [0,1] \) we know that
\[
|f^{(n)}(a + t\eta(b,a))|^q \leq (1 - t) \, |f^{(n)}(a)|^q + t \, |f^{(n)}(b)|^q,
\]
which implies that
\[
(a) \int_0^{\frac{a + \eta(b,a) - r}{\eta(b,a)}} t^n |f^{(n)}(a + t\eta(b,a))|^q \, dt
\]
\[
\leq \mu_{31} |f^{(n)}(a)|^q + \mu_{34} |f^{(n)}(b)|^q \tag{24}
\]
\[(b) \int_{\frac{a + \eta(b, a) - r}{\eta(b, a)}}^{\frac{1}{2}} (1 - t)^n \left| f^{(n)}(a + t\eta(b, a)) \right|^q \, dt \]

\[\leq \mu_{32} \left| f^{(n)}(a) \right|^q + \mu_{33} \left| f^{(n)}(b) \right|^q \quad (25) \]

\[(c) \int_{\frac{a}{\eta(b, a)}}^{1} (t - \frac{1}{2})^n \left| f^{(n)}(a + t\eta(b, a)) \right|^q \, dt \]

\[\leq \mu_{33} \left| f^{(n)}(a) \right|^q + \mu_{32} \left| f^{(n)}(b) \right|^q \quad (26) \]

\[(d) \int_{\frac{a}{\eta(b, a)}}^{1} (1 - t)^n \left| f^{(n)}(a + t\eta(b, a)) \right|^q \, dt \]

\[\leq \mu_{34} \left| f^{(n)}(a) \right|^q + \mu_{31} \left| f^{(n)}(b) \right|^q . \quad (27) \]

By substituting (22)-(27) in (21), we get the desired result. \[\square \]

Corollary 2.4. Under the assumptions in Theorem 2.3 with \(r = a + \eta(b, a) \), we have

\[
\left| I_a^b(f, \eta, n) \right| \\
= \frac{1}{\eta(b, a)} \int_{a}^{a+\eta(b, a)} f(u)du - \frac{f(a) + f(a + \eta(b, a))}{2} \]

\[+ \sum_{k=2}^{n} (-1)^k \eta^{k-1}(b, a) \left\{ f^{(k-1)}(a + \eta(b, a)) + (-1)^k f^{(k-1)}(a) \right\} \]

\[\leq \eta^n(b, a) \left(\frac{1}{n!} \right)^{1-\frac{1}{q}} \left(\frac{1}{2^{n+2}(n+1)(n+2)} \right)^{\frac{1}{q}} \]

\[\times \left[\left\{ (2n+3) \left| f^{(n)}(a) \right|^q + \left| f^{(n)}(b) \right|^q \right\}^{\frac{1}{q}} \right] \]

\[+ \left\{ \left| f^{(n)}(a) \right|^q + (2n+3) \left| f^{(n)}(b) \right|^q \right\}^{\frac{1}{q}} . \]

Corollary 2.5. Under the assumptions in Theorem 2.3 with \(r = a + \frac{1}{2} \eta(b, a) \),
we have

\[
\left| I^b_a(f, \eta, n) \right| = \left| \frac{1}{\eta(b, a)} \int_a^{a+\eta(b, a)} f(u)du - f(a + \frac{1}{2}\eta(b, a)) \right| \\
- \sum_{k=2}^{n} \frac{\eta^{k-1}(b, a)}{2k^k} \left| f^{(k-1)}(a + \frac{1}{2}\eta(b, a)) \right| \\
\leq \frac{\eta^n(b, a)}{n!} \left(\frac{1}{2^{n+1}(n+1)} \right)^{1-\frac{q}{n}} \left(\frac{1}{2^{n+2}(n+1)(n+2)} \right)^{\frac{1}{2}} \\
\times \left\{ \left| f^{(n)}(a) \right|^q + (n+1) \left| f^{(n)}(b) \right|^q \right\}^{\frac{1}{q}} \\
+ \left\{ (n+1) \left| f^{(n)}(a) \right|^q + \left| f^{(n)}(b) \right|^q \right\}^{\frac{1}{q}}.
\]

References

Received: October 15, 2013