Partition of a Nonempty Fuzzy Set in Nonempty Convex Fuzzy Subsets

Omar Salazar Morales
Universidad Distrital Francisco José de Caldas, Bogotá, Colombia
osalazarm@correo.udistrital.edu.co

José Jairo Soriano Méndez
Universidad Distrital Francisco José de Caldas, Bogotá, Colombia
jairosoriano@udistrital.edu.co

Abstract
This paper presents the concept of partition of a nonempty fuzzy set in nonempty convex fuzzy subsets. We restrict our discussion when the universal set, where are defined the fuzzy sets, is the real \(n \)-dimensional Euclidean space. We also show that a nonempty fuzzy set has a least one partition in nonempty convex fuzzy subsets.

Mathematics Subject Classification: 03E72, 03B52, 94D05

Keywords: partition; fuzzy set; convex fuzzy set

1 Introduction

Standard books of mathematics [1], [2], [4] define a partition of a classical set \(A \) as a family of pairwise disjoint nonempty subsets such that their union yields the original set. When the universal set \(X \), where the sets are formulated, is the real \(n \)-dimensional Euclidean space \(\mathbb{R}^n \), is possible that its subsets have properties such as convexity, which establishes that given two elements in a subset, all the points on the straight-line connecting the two points are also in the subset.

Zadeh [6] defined a fuzzy set \(A \) over a universal set \(X \) by using its membership function \(f_A(x) \), which assigns to every element \(x \in X \) a real number in \([0, 1]\), i.e., \(f_A : X \rightarrow [0, 1] \). He also extended the definition of convexity to fuzzy sets when the universal set \(X \) is \(\mathbb{R}^n \).

The aim of this paper is to show that under the definition of fuzzy set, which was given by Zadeh, and the extension of convexity to fuzzy sets, is also
possible to have at least one classical partition of a fuzzy set in convex fuzzy subsets, i.e., a family of pairwise disjoint nonempty convex fuzzy subsets such that their union yields the original fuzzy set.

This paper is organized as follows: Section 2 gives some preliminaries in order to establish the mathematical background, section 3 gives the definition of partition of a nonempty fuzzy set in nonempty convex fuzzy subsets and a simple result, finally, section 4 gives the conclusion.

2 Preliminaries

Definition 2.1 (Fuzzy set) [2], [4] Given a universal set \(X\), a fuzzy set \(A\) is defined by a function of the form \(f_A : X \mapsto [0, 1]\)

For a fuzzy set \(A\), the function \(f_A : X \mapsto [0, 1]\) is called membership function, and the value \(f_A(x)\) is called the degree of membership of \(x\) in the fuzzy set \(A\). A fuzzy set \(A\) is a subset of a fuzzy set \(B\), written as \(A \subseteq B\), if and only if \(f_A(x) \leq f_B(x)\) for all \(x \in X\). Two fuzzy sets \(A\) and \(B\) are equal, written as \(A = B\), if and only if \(f_A(x) = f_B(x)\) for all \(x \in X\). A fuzzy set is empty if and only if its membership function is identically zero on \(X\), i.e., \(f_\emptyset(x) = 0\) for all \(x \in X\). A fuzzy set is empty if and only if its membership function is identically zero on \(X\), i.e., \(f_\emptyset(x) = 0\) for all \(x \in X\). The union of two fuzzy sets \(A\) and \(B\) is a fuzzy set \(C\), written as \(C = A \cup B\), whose membership function is \(f_C(x) = \max\{f_A(x), f_B(x)\}\) for all \(x \in X\), or in abbreviated form \(f_C(x) = f_A(x) \lor f_B(x)\). The intersection of two fuzzy sets \(A\) and \(B\) is a fuzzy set \(C\), written as \(C = A \cap B\), whose membership function is \(f_C(x) = \min\{f_A(x), f_B(x)\}\) for all \(x \in X\), or in abbreviated form \(f_C(x) = f_A(x) \land f_B(x)\). Two fuzzy sets \(A\) and \(B\) are disjoint if \(A \cap B\) is empty, i.e., \(f_A(x) \land f_B(x) = 0\) for all \(x \in X\) [6].

Definition 2.2 (Support of a fuzzy set) [2], [4] The support of a fuzzy set \(A\) within the universal set \(X\) is the set \(\text{supp}(A) = \{x \in X \mid f_A(x) > 0\}\)

The support of a fuzzy set \(A\) is the set \(\text{supp}(A)\) that contains all the elements in \(X\) that have nonzero membership grades in \(A\). In the following, we suppose that \(X\) is the real Euclidean space \(\mathbb{R}^n\), with \(n \in \mathbb{N}\).

Definition 2.3 (Convex set) [3], [5] A nonempty subset \(A\) of \(\mathbb{R}^n\) is convex if for all \(x_1, x_2 \in A\) and all \(\lambda \in [0, 1]\), the point \(\lambda x_1 + (1-\lambda)x_2\) belongs to \(A\)

Definition 2.4 (Convex fuzzy set) [6] A fuzzy set \(A\) is convex if and only if the sets \(\Gamma_\alpha(A)\) defined by \(\Gamma_\alpha(A) = \{x \in X \mid f_A(x) \geq \alpha\}\) are convex for all \(\alpha\) in the interval \((0, 1]\)
3 Partition of a nonempty fuzzy set in non-empty convex fuzzy subsets

Definition 3.1 A partition in nonempty convex fuzzy subsets of a non-empty fuzzy set \(A\) is a collection of fuzzy sets
\[
A = \{ A_i | i \in I, A_i \subseteq A, A_i \neq \emptyset \},
\]
where \(I\) is an index set, such that
1. if \(i \neq j\) then \(A_i \cap A_j = \emptyset\),
2. \(\bigcup_{i \in I} A_i = A\),
3. for all \(i \in I\), \(A_i\) is a convex fuzzy set.

Theorem 3.2 Every nonempty fuzzy set has at least one partition in nonempty convex fuzzy subsets.

Proof. We will prove this theorem with the construction of a trivial partition in nonempty convex fuzzy subsets. Let \(A\) be a nonempty fuzzy set with membership function \(f_A : X \mapsto [0, 1]\), then, \(\text{supp}(A) \neq \emptyset\) because \(A\) is non-empty, i.e., there exists at least one \(x \in X\) such that \(f_A(x) > 0\). Now, let us define for every \(y \in \text{supp}(A)\) the fuzzy subset \(A_y \subseteq A\) with membership function \(f_{A_y} : X \mapsto [0, 1]\) which is given by
\[
f_{A_y}(x) = \begin{cases} f_A(x) & \text{if } x = y \\ 0 & \text{otherwise} \end{cases}
\]
It is clear that \(A_y \neq \emptyset\) because \(f_{A_y}(x) = f_A(x) > 0\) if \(x = y \in \text{supp}(A)\). Then, \(A = \{ A_y | y \in \text{supp}(A) \}\) is a partition in nonempty convex fuzzy subsets of the nonempty fuzzy set \(A\). Now we will prove this fact.

1. If \(y_1 \neq y_2\) then \(A_{y_1} \cap A_{y_2} = \emptyset\). This is because
 (a) if \(x = y_1\) then \(f_{A_{y_1}}(x) \land f_{A_{y_2}}(x) = f_A(x) \land 0 = 0\)
 (b) if \(x = y_2\) then \(f_{A_{y_1}}(x) \land f_{A_{y_2}}(x) = 0 \land f_A(x) = 0\)
 (c) if \(x \neq y_1\) and \(x \neq y_2\) then \(f_{A_{y_1}}(x) \land f_{A_{y_2}}(x) = 0 \land 0 = 0\)
2. Let
\[
B = \bigcup_{y \in \text{supp}(A)} A_y
\]
We have to prove that \(B = A\), or equivalently, \(f_B(x) = f_A(x)\) for all \(x \in X\). But \(f_B(x) = \sup \{ f_{A_y}(x) | y \in \text{supp}(A) \}\) for all \(x \in X\), then,
(a) if \(x \notin \text{supp}(A) \) then
\[
f_B(x) = \sup \{ f_{A_y}(x) \mid y \in \text{supp}(A) \} = \sup \{0\} = 0 = f_A(x)
\]

(b) if \(x \in \text{supp}(A) \) then
\[
f_B(x) = \sup \{ f_{A_y}(x) \mid y \in \text{supp}(A) \} = \sup \{0, f_A(x)\} = f_A(x)
\]

3. For all \(y \in \text{supp}(A) \), \(A_y \) is a convex fuzzy set. This is because \(\Gamma_\alpha(A_y) = \{ x \in X \mid f_{A_y}(x) \geq \alpha \} = \{y\} \) for all \(\alpha \) in the interval \((0, 1]\), then \(y \in \Gamma_\alpha(A_y) \) (\(y \) is the only member in \(\Gamma_\alpha(A_y) \)) implies that \(\lambda y + (1 - \lambda)y = y \in \Gamma_\alpha(A_y) \) for all \(\lambda \in [0, 1] \).

This completes the proof. ■

Figure 1 shows the concept of partition of a nonempty fuzzy set \(A \) in three nonempty disjoint convex fuzzy subsets \(A_1, A_2 \) and \(A_3 \). A fuzzy set can be partitioned in many ways, then, this kind of partition is not unique.

![Diagram of partition](image)

Figure 1: Example of partition of a nonempty fuzzy set in nonempty convex fuzzy subsets

4 Conclusion

This paper presented the concept of partition of a nonempty fuzzy set in nonempty convex subsets. It showed that a nonempty fuzzy set has a least one partition of this kind. A nonempty fuzzy set can be partitioned in many ways, where every member of the partition is a nonempty convex fuzzy subset.

References

Partition of a nonempty fuzzy set

Received: January, 2012