Existence of Common Coupled Fixed Point for a Class of Mappings in Partially Ordered Metric Spaces

Vahid Parvaneh

Department of mathematics
Gilan-E-Gharb Branch, Islamic Azad University
Gilan-E-Gharb, Iran
vahid.parvaneh@kiau.ac.ir

Abstract
In this paper we introduce the class of P-contraction mappings, analogous to the concept of C-contraction [2]. Also, we obtain a fixed point result for this class of contractions in complete metric spaces.

Mathematics Subject Classification: 47H10, 54H25

Keywords: Fixed point, Multivalued mapping, Complete metric space

1 Introduction
In recent years, extension of the Banach’s contraction principle [2] has been considered by many authors in different metric spaces. In [3], Bhaskar and Lakshmikantham presented coupled fixed point results for mixed monotone operators in partially ordered metric spaces and in 2009, Lakshmikantham and Ciric [6] proved coupled coincidence and coupled common fixed point theorems for nonlinear contractive mappings in this spaces.

2 Main results

Definition 2.1 ([6]) Let (X, \preceq, d) be a partially ordered set and $F : X \times X \to X$ and $g : X \to X$ be two self mappings. F has the mixed g-monotone property if F is monotone g-non-decreasing in its first argument and is monotone g-non-increasing in its second argument, that is, if for all $x_1, x_2 \in X$; $gx_1 \preceq gx_2$ implies $F(x_1, y) \preceq F(x_2, y)$ for any $y \in X$ and for all $y_1, y_2 \in X$; $gy_1 \succeq gy_2$ implies $F(x, y_1) \preceq F(x, y_2)$ for any $x \in X$.
Definition 2.2 ([1]) The mappings $F : X \times X \to X$ and $g : X \to X$ are called w-compatible if $g(F(x, y)) = F(gx, gy)$, whenever $g(x) = F(x, y)$ and $g(y) = F(y, x)$.

Definition 2.3 ([6], [1]) An element $(x, y) \in X \times X$ is called:

1. a coupled coincidence point of mappings $F : X \times X \to X$ and $g : X \to X$ if $g(x) = F(x, y)$ and $g(y) = F(y, x)$, and (gx, gy) is called coupled point of coincidence, and,

2. a common coupled fixed point of mappings $F : X \times X \to X$ and $g : X \to X$ if $x = g(x) = F(x, y)$ and $y = g(y) = F(y, x)$.

Theorem 2.4 Let (X, \preceq, d) be a partially ordered complete metric space. Let $F : X \times X \to X$ and $g : X \to X$ be two mappings such that F has the mixed g-monotone property and satisfy

$$d(F(x, y), F(u, v)) \leq \frac{1}{2}(d(gx, gu) + d(F(x, y), gy) + d(F(x, y), gu) + d(F(u, v), gx) + d(F(u, v), gu) - \varphi(d(gx, gu), d(F(x, y), gx), d(F(x, y), gu), d(F(u, v), gx), d(F(u, v), gu))),$$

for every two pairs $(x, y), (u, v) \in X \times X$ such that $gx \preceq gu$ and $gy \succeq gv$, where $\varphi : [0, \infty)^5 \to [0, \infty)$ be a continuous function such that $\varphi(x, y, z, t, u) = 0$ if and only if $x = y = z = t = u = 0$. Also suppose X has the following properties:

i. If a non-decreasing sequence $x_n \to x$; then $x_n \preceq x$ for all $n \geq 0$.

ii. If a non-increasing sequence $y_n \to y$; then $y_n \succeq y$ for all $n \geq 0$.

Let $F(X \times X) \subseteq g(X)$ and $g(X)$ is a complete subset of X. If there exists $(x_0, y_0) \in X \times X$ such that $gx_0 \leq F(x_0, y_0)$ and $gy_0 \geq F(y_0, x_0)$, then F and g have a coupled coincidence point in X.

Proof 2.5 Let $x_0, y_0 \in X$ be such that $gx_0 \leq F(x_0, y_0)$ and $gy_0 \geq F(y_0, x_0)$. Since $F(X \times X) \subseteq g(X)$, we can define $x_1, y_1 \in X$ such that $gx_1 = F(x_0, y_0)$ and $gy_1 = F(y_0, x_0)$, then $gx_0 \leq F(x_0, y_0) = gx_1$ and $gy_0 \geq F(y_0, x_0) = gy_1$. Since F has the mixed g-monotone property, we have $F(x_0, y_0) \preceq F(x_1, y_1) \preceq F(x_1, y_1)$ and $F(y_0, x_0) \succeq F(y_1, x_0) \succeq F(y_1, x_1)$. In this way we construct the sequences z_n and t_n inductively as $z_n = gx_n = F(x_{n-1}, y_{n-1})$, and $t_n = gy_n = F(y_{n-1}, x_{n-1})$, for all $n \geq 0$.

We know that for all $n \geq 0$, $z_{n-1} \preceq z_n$, and $t_{n-1} \succeq t_n$. This can be done as in Theorem 3.1. of [4], so we omit the proof of this part.

Step I. We will prove that $\lim_{n \to \infty} d(z_n, z_{n+1}) = \lim_{n \to \infty} d(t_n, t_{n+1}) = 0.$
Using 1 (which is possible since \(gx_{n-1} \leq gx_n\) and \(gy_{n-1} \geq gy_n\), we obtain that

\[
d(z_n, z_{n+1}) = d(F(x_{n-1}, y_{n-1}), F(x_n, y_n))
\leq \frac{1}{2} (d(gx_{n-1}, gx_n) + d(F(x_{n-1}, y_{n-1}), gx_{n-1}) + d(F(x_{n-1}, y_{n-1}), gx_n)
+ d(F(y_n, x_n), gx_{n-1}) + d(F(y_n, x_n), gx_n)) \leq 1
\]

\[
d(z_n, z_{n+1}) = \frac{1}{2} (d(z_n, z_{n+1}) + d(z_{n-1}, z_n) + d(z_{n+1}, z_{n-1} + d(z_{n+1}, z_n))
- \varphi (d(z_{n+1}, z_n), d(z_n, z_{n-1}), d(z_{n+1}, z_{n-1}))(z_{n+1}, z_n))
\leq \frac{1}{2}(d(z_{n+1}, z_n) + d(z_n, z_{n-1}) + d(z_{n+1}, z_{n-1} + d(z_{n+1}, z_n))
\leq \frac{1}{2}(3d(z_{n+1}, z_n) + 2d(z_n, z_{n-1})),
\]

(2)

hence, \(d(z_{n+1}, z_n) \leq d(z_n, z_{n-1})\).

Again, since \(gy_n \leq g_{y_{n-1}}\) and \(gx_n \geq g_{x_{n-1}}\),

\[
d(t_{n+1}, t_n) = d(F(y_n, x_n), F(y_{n-1}, x_{n-1}))
\leq \frac{1}{2} (d(gy_n, gy_{n-1}) + d(F(y_n, x_n), gy_n) + d(F(y_{n-1}, x_{n-1}), gy_{n-1})
+ d(F(y_{n-1}, x_{n-1}), gy_n) + d(F(y_n, x_n), gy_{n-1})) \leq 1
\]

\[
d(t_{n+1}, t_n) = \frac{1}{2} (d(t_{n+1}, t_n) + d(t_{n+1}, t_{n-1}) + d(t_n, t_n) + d(t_n, t_{n-1})
- \varphi (d(t_{n+1}, t_n), d(t_{n+1}, t_{n-1}), d(t_n, t_n), d(t_n, t_{n-1}))
\leq \frac{1}{2}(3d(t_{n+1}, t_n) + 2d(t_n, t_{n-1})),
\]

(3)

hence, \(d(t_{n+1}, t_n) \leq d(t_n, t_{n-1})\).

It follows that the sequences \(d(z_{n+1}, z_n)\) and \(d(t_{n+1}, t_n)\) are monotone decreasing sequences of non-negative real numbers and consequently there exist \(r, s \geq 0\) such that \(\lim_{n \to \infty} d(z_{n+1}, z_n) = r\), and \(\lim_{n \to \infty} d(t_{n+1}, t_n) = s\).

From 2 we have

\[
d(z_{n+1}, z_n) \leq \frac{1}{3} (d(z_n, z_{n+1}) + d(z_n, z_n) + d(z_{n+1}, z_n) + d(z_{n+1}, z_{n+1}))
\leq \frac{1}{3}(3d(z_{n+1}, z_n) + 2d(z_n, z_{n+1})).
\]

(4)

If \(n \to \infty\) in 4, we have \(r = \lim_{n \to \infty} \frac{1}{3} (3r + d(z_{n-1}, z_{n+1})) \leq r\), hence \(\lim_{n \to \infty} d(z_{n-1}, z_{n+1}) = 2r\).

We have proved in (2)

\[
d(z_n, z_{n+1}) \leq \frac{1}{3} (d(z_n, z_{n+1}) + d(z_n, z_{n+1}) + d(z_{n+1}, z_{n+1}) + d(z_{n+1}, z_n))
- \varphi (d(z_n, z_{n+1}), d(z_n, z_{n+1}), d(z_{n+1}, z_n), d(z_{n+1}, z_n))
\leq \frac{1}{3}(3d(z_{n-1}, z_n) + 2d(z_n, z_{n+1})).
\]

(5)
Now, if \(n \to \infty \) and since \(\varphi \) is continuous, we can obtain
\[
r \leq r - \varphi(r, r, 0, 2r) \leq r.
\]

Consequently, \(\varphi(r, r, 0, 2r) = 0 \). Hence
\[
\lim_{n \to \infty} d(z_{n+1}, z_n) = r = 0. \tag{6}
\]

In a same way, we have
\[
\lim_{n \to \infty} d(t_{n+1}, t_n) = s = 0. \tag{7}
\]

Now, we show that \(\{z_n\} \) and \(\{t_n\} \) are Cauchy sequences in \(X \).

Let \(\{z_n\} \) is not a Cauchy sequence, then there exists \(\varepsilon > 0 \) for which we can find subsequences \(\{z_{m(k)}\} \) and \(\{z_{n(k)}\} \) of \(\{z_n\} \) such that \(n(k) > m(k) > k \) and \(d(z_{m(k)}, z_{n(k)}) \geq \varepsilon \), where \(n(k) \) is the smallest index with this property, i.e.,
\[
d(z_{m(k)}, z_{n(k)-1}) < \varepsilon. \tag{8}
\]

From triangle inequality
\[
\varepsilon \leq d(z_{m(k)}, z_{n(k)}) \leq d(z_{m(k)}, z_{n(k)-1}) + d(z_{n(k)-1}, z_{n(k)}) < \varepsilon + d(z_{n(k)-1}, z_{n(k)}). \tag{9}
\]

If \(k \to \infty \), Since \(\lim_{n \to \infty} d(z_n, z_{n+1}) = 0 \), from 9 we can conclude that
\[
\lim_{k \to \infty} d(z_{m(k)}, z_{n(k)}) = \varepsilon. \tag{10}
\]

Moreover, we have
\[
|d(z_{n(k)}, z_{m(k)+1}) - d(z_{n(k)}, z_{m(k)})| \leq d(z_{m(k)+1}, z_{m(k)}), \tag{11}
\]
and
\[
|d(z_{n(k)+1}, z_{m(k)}) - d(z_{n(k)}, z_{m(k)})| \leq d(z_{n(k)+1}, z_{n(k)}), \tag{12}
\]
and
\[
|d(z_{m(k)+1}, z_{n(k)+1}) - d(z_{m(k)+1}, z_{n(k)})| \leq d(z_{n(k)+1}, z_{n(k)}). \tag{13}
\]

Since \(\lim_{n \to \infty} d(z_n, z_{n+1}) = 0 \), and 11, 12 and 13 are hold, we get
\[
\lim_{k \to \infty} d(z_{m(k)+1}, z_{n(k)}) = \lim_{k \to \infty} d(z_{m(k)+1}, z_{n(k)+1}) = \lim_{k \to \infty} d(z_{n(k)+1}, z_{m(k)}) = \varepsilon. \tag{14}
\]
Again, as \(n(k) > m(k) \), we have \(gx_{m(k)} \preceq gx_{n(k)} \), and \(gy_{m(k)} \succeq gy_{n(k)} \). So, from 1, for all \(k \geq 0 \), we have

\[
d(z_{m(k)+1}, z_{n(k)+1}) = d(F(x_{m(k)}, y_{m(k)}), F(x_{n(k)}, y_{n(k)}))
\]

\[
\leq \frac{1}{4} (d(gx_{m(k)}, gx_{n(k)}) + d(F(x_{m(k)}, y_{m(k)}), gx_{m(k)}) + d(F(x_{m(k)}, y_{m(k)}), gx_{n(k)}) + d(F(x_{n(k)}, y_{n(k)}), gx_{m(k)})
\]

\[
\leq \frac{1}{4} (d(gx_{m(k)}, gx_{n(k)}) + d(F(x_{m(k)}, y_{m(k)}), gx_{m(k)}) + d(F(x_{m(k)}, y_{m(k)}), gx_{n(k)}) + d(F(x_{n(k)}, y_{n(k)}), gx_{m(k)})
\]

\[
- \varphi(d(gx_{m(k)}, gx_{n(k)}), d(F(x_{m(k)}, y_{m(k)}), gx_{m(k)}), d(F(x_{m(k)}, y_{m(k)}), gx_{n(k)})
\]

\[
, d(F(x_{n(k)}, y_{n(k)}), gx_{m(k)}) + d(F(x_{n(k)}, y_{n(k)}), gx_{n(k)}))
\]

\[
= \frac{1}{8} (d(z_{m(k)}, z_{n(k)}) + d(z_{m(k)}+1, z_{n(k)}) + d(z_{m(k)}+1, z_{n(k)})
\]

\[
+ d(z_{n(k)+1}, z_{m(k)}) + d(z_{n(k)+1}, z_{n(k)})
\]

\[
- \varphi(d(z_{m(k)}, z_{n(k)}), d(z_{m(k)}+1, z_{m(k)}), d(z_{m(k)}+1, z_{n(k)})
\]

\[
, d(z_{n(k)+1}, z_{m(k)}), d(z_{n(k)+1}, z_{n(k)}))
\]

(15)

If \(k \to \infty \), from 10 and 14 we have, \(\varepsilon \leq \frac{1}{3}(3\varepsilon) - \varphi(\varepsilon, 0, \varepsilon, 0) \), hence, we have \(\varepsilon = 0 \), which is a contradiction and it follows that \(\{z_n\} \) is a Cauchy sequence in \(X \). Analogously, it can be proved that \(\{t_n\} \) is a Cauchy sequence in \(X \).

Since \((X, d) \) is complete and \(\{z_n\} \) is Cauchy, there exists \(z \in X \) such that \(\lim_{n \to \infty} z_n = \lim_{n \to \infty} gx_n = z \), and since \(g(X) \) is closed and \(\{z_n\} \subseteq g(X) \), we have \(z \in g(X) \) and hence there exists \(u \in X \) such that \(z = gu \). Similarly, there exist \(t, v \in X \) such that \(t = \lim_{n \to \infty} t_n = \lim_{n \to \infty} gy_n = gv \).

We prove that \((u, v) \) is a coupled coincidence point of \(F \) and \(g \).

We know that \(gx_n \) and \(gy_n \) are non-decreasing and non-increasing in \(X \), respectively and \(gx_n \to z = gu \) and \(gy_n \to t = gv \). From conditions of our theorem, \(gx_n \preceq gu \) and \(gy_n \succeq gv \). So, using 1 we obtain that

\[
d(z_{n+1}, F(u, v)) = d(F(x_n, y_n), F(u, v))
\]

\[
\leq \frac{1}{4} (d(gx_n, gu) + d(F(x_n, y_n), gx_n) + d(F(x_n, y_n), gu)
\]

\[
+ d(F(u, v), gx_n) + d(F(u, v), gu)
\]

\[
- \varphi(d(gx_n, gu), d(F(x_n, y_n), gx_n), d(F(x_n, y_n), gu)
\]

\[
, d(F(u, v), gx_n), d(F(u, v), gu))
\]

\[
= \frac{1}{8} (d(z_n, z) + d(z_{n+1}, z_n) + d(F(u, v), z_n) + d(F(u, v), z))
\]

\[
- \varphi(d(z_n, z), d(z_{n+1}, z_n), d(F(u, v), z_n), d(F(u, v), z))
\]

(16)

If in (16) \(n \to \infty \),

\[
d(z, F(u, v)) \leq \frac{1}{4} (d(z, z) + d(z, z) + d(z, z) + d(F(u, v), z))
\]

\[
- \varphi(d(z, z), d(z, z), d(z, z), d(F(u, v), z))
\]

and hence \(\varphi(0, 0, 0, d(F(u, v), z), d(F(u, v), z)) \leq -\frac{2}{3} d(z, F(u, v)) \leq 0 \), and therefore, \(d(z, F(u, v)) = 0 \). So, \(F(u, v) = z = g(u) \) and in a similar way
we can obtain that \(F(v, u) = t = g(v) \). That is, \(g \) and \(F \) have a coupled coincidence point.

Theorem 2.6 Adding the following conditions to the hypotheses of Theorem 2.4, we obtain the existence of the common coupled fixed point of \(F \) and \(g \).

(i) If any nondecreasing sequence \(z_n \) in \(X \) converges to \(z \), then we assume \(gz \preceq z \), and also, if any nonincreasing sequence \(t_n \) in \(X \) converges to \(t \), then we assume \(gt \succeq t \).

(ii) \(g \) and \(F \) be \(w \)-compatible continuous mappings.

Proof 2.7 We know that the nondecreasing sequence \(gx_n = z_n \rightarrow z \) and by our assumptions \(gz_n \preceq gz \preceq z = gu \).

Also, the nonincreasing sequence \(gy_n = t_n \rightarrow t \) and by our assumptions \(gt_n \succeq gt \succeq t = gv \).

So, from (1) we have

\[
d(F(z_n, t_n), F(u, v)) \leq \frac{1}{5} (d(gz_n, gu) + d(F(z_n, t_n), gz_n) + d(F(z_n, t_n), gu) \\
+ d(F(u, v), gz_n) + d(F(u, v), gu)) \\
- \varphi(d(gz_n, gu), d(F(z_n, t_n), gz_n), d(F(z_n, t_n), gu) \\
+ d(F(u, v), gz_n), d(F(u, v), gu)).
\] (18)

Since \(F \) and \(g \) are \(w \)-compatible, and \(F(u, v) = gu = z \) and \(F(v, u) = gv = t \) we have that \(gz = g(gu) = g(F(u, v)) = F(gu, gv) = F(z, t) \).

Now, if in (18), \(n \rightarrow \infty \), we obtain

\[
d(gz, z) \leq \frac{1}{5} (d(gz, z) + d(gz, gz) + d(gz, z) + d(z, gz) + d(z, z)) \\
- \varphi(d(gz, z), d(gz, gz), d(gz, z), d(z, gz), d(z, z)).
\] (19)

Hence, \(\varphi(d(gz, z), d(gz, gz), d(gz, z), d(z, gz), d(z, z)) = 0 \) and so, \(d(gz, z) = 0 \). Therefore \(gz = z \) and from \(F(z, t) = gz \), we conclude that \(F(z, t) = gz = z \).

Analogously, we can prove that \(F(z, t) = gt = t \).

Note that if \((X, \preceq) \) be a partially ordered set, then we endow \(X \times X \) with the following partial order relation:

\[
(x, y) \preceq (u, v) \iff x \preceq u, y \succeq v.
\]

for all \((x, y), (u, v) \in X \times X \). ([7])

Theorem 2.8 Let all the conditions of theorem 2.6 be fulfilled.

\(F \) and \(g \) have a unique common coupled fixed point provided that the common coupled fixed points of \(F \) and \(g \) are comparable.
Proof 2.9 Let \((x, y)\) and \((u, v)\) be two common coupled fixed points of \(F\) and \(g\), i.e., \(x = g(x) = F(x, y), y = g(y) = F(y, x),\) and \(u = g(u) = F(u, v), v = g(v) = F(v, u)\).

Suppose that \((x, y)\) and \((u, v)\) are comparable.
Since \((u, v)\) is comparable with \((x, y)\), we may assume that \((x, y) \preceq (u, v)\).
Now, applying 1 one obtains that
\[
d(x, u) = d(F(x, y), F(u, v)) \\
\leq \frac{1}{2}(d(gx, gu) + d(F(x, y), gx) + d(F(x, y), gu) \\
+ d(F(u, v), gx) + d(F(u, v), gu)) \\
- \varphi(d(gx, gu), d(F(x, y), gx), d(F(x, y), gu)) \\
, d(F(u, v), gx), d(F(u, v), gu)) \tag{20} \\
= \frac{1}{2}(d(gx, gu) + 0 + d(gx, gu) + d(gu, gx) + 0) \\
- \varphi(d(gx, gu), 0, d(gx, gu), d(gu, gx), 0) \\
= \frac{1}{2}(d(x, u) + 0 + d(x, u) + d(u, x) + 0) \\
- \varphi(d(x, u), 0, d(x, u), d(u, x), 0).
\]

Therefore, \(\varphi(d(x, u), 0, d(x, u), d(u, x), 0) \leq -\frac{2}{5}d(x, u) \leq 0\). Hence \(x = u\).
In a similar way, we have \(y = v\).

References

Received: August, 2011