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Abstract 

 

Regular and chaotic oscillations in a modified discrete two dimensional coupled predator-prey 

model, proposed recently, is re-investigated by observing the bifurcation diagram, calculating 

Lyapunov exponents and correlation dimensions for various orbits. The map evolves from one 

cycle to three cycles followed by period doubling and then to a chaotic regime and show 

bistability as its parameter λ varies, 0 < λ ≤ 1.211. Initial population size of the species and the 

value their coupling coefficients play crucial role for subsequent evolutionary phenomena of the 

system. Regular and chaotic evolutions depend completely on the coefficient ,λ, and on the 

initial prey and predator population. Lyapunov exponents and correlation dimensions provide 

true measure of chaos and also, to identify the chaotic orbits. Some recently discovered 

indicators, FLI, SALI and DLI have also been used to understand the nature of orbits. 

Mathematical analysis have been carried out to find stable and unstable fixed points and to 

obtain numerical value of the parameter λ for sensitive state of the system to initial conditions 

i.e. emergence of chaos. Bistability condition have been discussed for variation of λ values. 

Graphical representation of Lyapunov exponents and correlation dimensions provide better 

understanding of the nature of orbits which are further justified by the use of FLI, SALI and DLI.  
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1. Introduction 
 

Competition between species for their survival under various environmental conditions, 

interactions among species and their relationship have been described recently through a number 

of research articles. Though not very realistic, the first mathematical approach for predator-prey 

model was initiated by Lotka (1925) and Volterra (1926) which now known as Lotka-Volterra 

model. A number of recent articles have been appeared on Lotka-Volterra model for different 

evolutionary conditions, e.g., Tedeschini-Lalli (1995), Li et al (2004), Son et al (2004), and 

drawn very interesting results. Logistic map and coupled logistic map have been used to describe 

population dynamics in many context e.g. Verhulst (1845), May (1976), Feigenbaum (1978) etc. 

This logistic map have large applications in different areas. López-Ruiz and Fourner-Prunaret, 

(2003- 2005), have interesting articles on predator-prey model for different choices of λn. In their 

paper, López-Ruiz and Fourner-Prunaret, (2005), proposed a predator-prey problem shown as a 

cubic discrete coupled logistic equation with assumption that the coupling depending on the 

population size of species and on a positive constant λ. They further assumed that, when each 

species living in isolation, the prey growth capacity is 4 times stronger than that of the 

predator.This constant itself depending on the prey reproduction rate as well as on the predator 

hunting strategy. Conditions of coexistence of predator and prey populations, extinction of ether 

one or both and their periodic, quasi-periodic and chaotic oscillations for parameter λ have been 

laid down. The modified coupled logistic model of predator-prey is written as follows: 

  

  xn + 1  =  λ (3 yn + 1) xn (1 – xn ) 

  yn + 1  =  λ (-3 xn + 4) yn (1 – yn ),   (1.1) 

 

where xn, yn, respectively, represents the predator and prey populations at generation n. 

Evolutionary dynamics of each species is similar to that of the logistic map. For a value of λ the 

above system have five fixed points. Stability analysis together with iterations, could decide the 

nature of orbits. Varying parameter λ from λ = 0 to λ = 1.21091, we can obtain interesting 

criteria of bifurcation leading to chaos.   

 

The system (2.1) has five fixed points and for a particular λ value, their stability can be 

examined. For various range of values of λ, existence of attractors can be obtained by using the 

method of dynamical systems. Also, to observe regular and chaotic fluctuations, in addition to 

time series and phase plane plots, one should extend the work further to calculate largest 

Lyapunov exponents and FLI, SALI and DLI plots. 

 

The objective of this study is to extend further study on system (1.1) and to search for periodic 

orbits as well as chaotic evolutions. We plot the bifurcation diagram of this map by varying λ, 0 

≤ λ ≤ 1.22. This plot allow us to observe a complete scenario of evolution and to separate regular  
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and chaotic zones of evolution. In the process we would like to obtain some periodic orbits also. 

Then, we proceed further to find the plots for largest Lyapunov exponents for chaotic fluctuation 

and then to obtain FLI SALI and DLI plots for regular as well as chaotic motions. For the case of 

chaos, we wish to calculate the correlation dimension also.   

 

  

2. Bifurcation Analysis and Measure of Chaos 
 

Investigating chaotic evolution in a ecological system is a challenging problem due to the its 

complex nature. The usual analysis through time series, phase plot, Poincaré map may not be 

enough to explain such complexity. A bifurcation diagram of the system certainly clarifies its 

evolution as parameters, (e.g., in our case λ in eqn. 1.1)), within the system changes in certain 

manner. We need some other elements to characterize deterministic chaos. Important among 

these are Lyapunov exponents and correlation dimension, Grassberger and Procaccia(1983). 

There may also be other Measures such as topological entropy etc. But in this study our 

concentration confined to above two only. 

 

Bifurcation Diagrams:  
Bifurcations in the system occurs during its evolution while changing the parameter λ. Here, we 

have varied the parameter λ in the renge 0 ≤ λ ≤ 1.22 and drawn the bifurcation diagram for the 

model (1.1) and shown in Fig. 2.1.  

 

                        
 

Fig.2.1: Bifurcation diagram of map (1.1) showing trifurcation of cycle one followed by period 

doubling and then chaos.  

When λ exceeds, approximately, the value 1.092, one observe again a periodic window of period 

9 and followed by chaos. Then, we see an one cycle and after discontinuity of the plot due to  
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occurrence of singularities in the system and can be seen from Fig.2.2. Finally, for range of 

values of λ, we observe a repeat of the bifurcation scenario, as in the second figure in Fig.2.1.      

 

            
          

Fig.2.2: Bifurcations for 1.08 ≤ λ ≤ 1.105 and 1.088 ≤ λ ≤ 1.171 

The above bifurcation figures clearly indicate the  number of attractors and the type of 

bifurcations mentioned in the work of López-Ruiz and Fourner-Prunaret, (2005). The 

coexistence or extinct of one or both the species and the fluctuations of their numbers depend on 

range of values of parameter λ as well as on the initial numbers of both the specdies (e.g. x0 and 

y0 ). 

 

 

Lyapunov Exponents (Lyapunov Numbers):  
 

Lyapunov exponents are dynamical measure capable to characterize deterministic chaos in the 

system which features to the highly sensitive dependence on initial conditions. Actually it means 

the exponential divergence of orbits originated closely with very small difference in initial 

conditions. It is an important and effective element to identify regularity and chaos in the system 

and can be explained in the following ways:  

 

Lyapunov Numbers : Chaos in a dynamical system is characterized by the exponential 

divergence of orbits originated closely. Such complexity of behavior in solution can be measured 

by a quantity called Lyapunov number. Lyapunov exponents are the measure of divergence of 

two orbits originated with slightly different initial conditions.  For any one dimensional map 

defined in some interval (a, b), 



 

 

Modified coupled logistic type predator-prey model                                                                6931 

 

 

  x n + 1 = f (x n)       (2.1) 

 

and its two orbits starting at  x0  and x0 ± δ0, where  δ0  is very small , expanding f(x0 + δ0 ) by 

taylors series, then after one iteration the distance between the orbits be given by  

  δ1 = І f’(x0 ) І/ δ0  =  M0 δ0      (2.2) 

Mo  is known as first step magnification factor.  Similarly, at the second iteration, the distance 

between the orbits can be written as 

  δ2 = І f’(x1 ) І/ δ1  =  M1 δ1 = M1 M0 δ0     (2.3) 

Continuing in this manner, separation between the orbits at n
th

 iteration is   

  δn = І f’(xn-1 ) І/ δn-1  =  Mn-1 δn-1 = Mn-1 Mn-2 . . .M0 δ0   (2.4) 

The product M0 M1 M2 …..Mn-1 is the accumulation of magnification factors, so it is meaningful 

to consider an average of it. The most convenient is the geometric average  

(M0 M1 M2 …..Mn-1)
1/n

 

Taking log, one obtains the arithmetic average 

λ = ln (M0 M1 M2 …..Mn-1)
1/n

  = 1/n (ln Mo+ln M1 + ln M2 + . . .+ ln Mn-1 ) 

               = 1/n (ln (І f’(xo ) І) + ln (І f’(x1 ) І) + ln (І f’(x2 ) І) + . . . + ln (І f’(xn-1 ) І) ) (2.5) 

Then, the condition of stability of a implies: 

If average magnification is less than 1, the orbit is stable and if it is greater than 1 the orbit is 

unstable, i.e.  λ < 0  => stable orbit and λ > 0  => unstable orbit. For accurate result, one should 

take the iterations n as large as possibleThis leads to the following definition of Lyapunov 

exponents: 

Def. 1:   Lyapunov exponents of a smooth map f on R with x0 as initial point be defined as  

λ(x0 ) = Lim
n ∞→

1/n [ln (І f’(x0 ) І) + ln (І f’(x1 ) І) + ln (І f’(x2 ) І) + . . . + ln (І f’(xn-1 ) І) ] 
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provided the limit exists.  Lyapunov number is the exponent of Lyapunov exponent and is given 

by  

 L(xo ) = 
)

0
x(λ

e        (2.6) 

 

Def. 2: A bounded orbit {x0, x1, x2, x3, . . ., xn } of the map f on R is called chaotic if following 

conditions are satisfied: 

(a) {x0, x1, x2, x3, . . ., xn } is not asymptotically periodic 

(b) No λ(x0 ) is exactly equal to zero , and  

(c) λ(x0 ) > 0 or equivalently, L(xo ) > 1. 

From above definition, a clear interpretation for Lyapunov exponent is given as:  it is the 

measure of loss of information during the process of iteration.  

For higher dimensional system, we can generalize the above one dimensional case  to higher 

dimension and obtain 

    C

1n

0t
0

U)
t

(XJlog
n

1
lim

n

)
0

U,
0

(Xλ
−

=∞→

= , (2.7) 

and 

    
n)

0
U,

0
(Xλ

e
n

Y
n

X ≈− , 

where  X ∈ Ρ
n, 

 F: Ρ
n
 → Ρ

n
 , U0  = X0 – Y0  and J is the Jacobian matrix of map F. 

Quantitatively, two trajectories in phase space with initial separation δx0 diverge (provided that 

the divergence (can be treated within the linearized approximation) 

    (0)δx
tλ

e(t)δx ≈             (2.8)                             

where λ > 0 is the Lyapunov exponent.   

The system described by the map f be regular as long as λ ≤ 0 and chaotic when λ > 0. 
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For same parameter value but different initial conditions results could be very different. For, take 

λ = 1.095 and initial condition (x0, y0) = (0.4, 0.3), the evolution becomes chaotic and in this case 

the largest value of Lyapunov exponents can be obtained as 0.377034 whereas for same value of 

λ but (x0, y0) = (0.6, 0.6), the system becomes regular and minimum value of Lyapunov 

exponents be equal to -0.10699. Plots of Lyapunov exponents for these two cases are shown in 

Fig. 2.3. For a value of λ greater than 1.09969, one can observe a type of constant equilibrium  

for populations, (left figure in Fig.2.2), and no chaotic band. For λ > 1.1759,  one observes Hopf 

bifurcation emerging in the form of certain invariant curves. This indicated various states of 

population oscillations. Further increasing  λ resulting in overflows of iterations. This amounts to 

certain uncertainty situation or crash in the system. There may be a catastrophic situation leading 

to extingtion of both the species.   

 

        
 

Fig. 2.3: Plot of largest Lyapunov exponent for λ = 1.095 and (x0 , y0)  are (0.4, 0.3) in 

figure (a) and (0.6, 0.6) in figure (b).  

 

         
Fig.2.4: Plot of Lyapunov exponents for λ = 1.0995 and (x0 , y0) = (0.4, 0.3). A largest 

Lyapunov exponent is 0.381135 in this case and its average is 0.204675. 
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Aperfect equilibrium state reached for approximately λ = 1.2101 when both when initially both 

the species are equal in number 0.5, i.e. x = 0.5 and y = 0.5. A phase diagram for this case 

appears to be a limit cycle and, except few initial iterations,  Lyapunov exponents have very 

small negative values near to zero. This is a case of neutral stabilitry and coexistence occur for 

boyth species. Both plots are shown in Fig. 2.5. 

 

                    

      
       

  
   

 

 

Fig.2.5: Phase plot and corresponding plot for Lyapunov exponents for λ = 1.2101 and x0 = 0.5 

and y0 = 0.5. Phase plot is a limit cycle and Lyapunov exponents approximately zero.  

 

 

Correlation Dimension 

Chaos appears during evolution in nonlinear systems in the form of strange attractor which has 

fractal properties. Also we have the notion of weak and strong chaos. Such notion may be 

justified by some measure of chaos. Correlation dimension gives a measure of dimensionality of 

the chaotic set. Being one of the characteristic invariants of nonlinear system dynamics, the  
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correlation dimension actually gives a measure of complexity for the emerging chaotic attractor 

of the system. By calculating this dimension one could be in a position do explain the nature of 

chaos appearing in the system. To determine correlation dimension we use statistical method 

described in the books by Nagashima and Baba (2005) and Martelli (1999). The methods 

described in these books are very practical and efficient compared to many other methods, like 

box counting etc. The procedure to obtain correlation dimension follows the following steps, 

Martelli (1999): 

Consider an orbit O(x1) = {x1, x2, x3, x4, }, of a map f: U → U, where U is an open bounded set 

in Ρ
n
. To compute correlation dimension of O(x1), for a given positive real number r, we form the 

correlation integral, Grassberger and Procaccia (1983), 

   ∑
≠









−

−∞→

=
n

ji
j

x
i

x-rH
)1n(n

1
lim

n
)r(C ,  (2.9) 

where   

   




≥

<
=

0x1,

0x0,
)(xH , 

is the unit-step function, (Heaviside function). The summation indicates the the number of pairs 

of vectors closer to r when 1 ≤ i, j ≤ n and i ≠ j. C(r) measures the density of pair of distinct 

vectors xi and xj that are closer to r.  

The correlation dimension Dc  of O(x1) is defined as 

   
rlog

)r(Clog
lim

0r
c

D
→

=      (2.10) 

To obtain Dc, log C(r)/logr is plotted against r, (the plot may be called a plot of correlation 

curve),  and then we use the least square method to find a straight line fitted to this curve. The y- 

intercept of this straight line provides the value of the correlation dimension Dc. For different 

orbits, i.e. the orbits due to different initial conditions, and different parameter values λ, one gets 

different correlation dimensions signifying the order of chaotic orbits, (how weak or how strong 

the chaotic orbit is). 
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For λ = 1.099, correlation dimension for the orbit of (0.4, 0.3) is DC =  0.985113 whereas for 

orbit of (0.55, 0.5), correlation dimension is DC = 0.000736621. The corresponding correlation 

curves are given in Fig.2.6  

 

        
Fig.2.6: Correlation curves for orbits of (0.3, 0.4) and (0.55, 0.5) when λ = 1.099. 

 

The equations of straight lines, obtained with least square fitting method, for above correlation 

curves respectively, be given by 

                                   y = 0.985113 – 1.1098 x   

and    

                                      y = 0.000736621- 0.000940368. 

 

It is clear from the second equation that the correlation dimension of the orbit of (0.55, 0.5) when  

λ = 1.099 is almost zero. We have continued our calculation for correlation dimensions for 

various orbits and with different parameter values λ and shown in Table 1. 

       

Table: 1: Calculating Correlation dimension for 1.09 ≤ λ ≤ 1.22. 

 

Observation 

No. 

Value of Parameter 

λ 

Initial Values of 

( x0, y0 ) 

Correlation Dimension 

DC 

1 1.09 (0.55, 0.5) 0.00036801 

2 1.095 (0.4, 0.3) 0.835527 

3 1.095 (0.6, 0.6) 0.000921154 

4 1.095 (0.55, 0.5) 0.00055224 

5 1.099 (0.55, 0.5) 0.000736621 

6 1.099 (0.4, 0.3) 0.985113 

7 1.099965 (0.3, 0.6) 1.21806 

8 1.099965 (0.55, 0.5) 0.000921154 

9 1.1 (0.5, 0.4) 0.969251 

10 1.1 (0.55, 0.5) 0.000921154 
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11 1.1 (0.5, 0.5) 0.0105549 

12 1.1 (0.6, 0.5) 0.0000 

13 1.17565 (0.5, 0.5) 0.1293 

14 1.17565 (0.55,0.44) 3.35727 

15 1.2 (0.4, 0.4) 4.10614 

16 1.2 (0.5, 0.5) 0.350668 

17 1.2 (0.55, 0.5) 0.29756 

18 1.211 (0.0.4, 0.6) 0.551895 

19 1.211 (0.6, 0.5) 0.383504 

20 1.211 (0.55, 0.5) 0.49418 

21 1.211 (0.5, 0.5) 0.572222 

22 1.211 (0.5, 0.55) 0.383504 

23 1.22 (0.6, 0.5) 1.98922 

24 1.22 (0.55, 0.5) 2.04899 

25 1.2101 (0.5, 0.5) 0.496059 

26 1.2101 (0.55, 0.45) 0.497083 

 

 

A discussion for numerical results obtained in Table 1will be followed in the last section. 

However, an important general type of characteristic behavior has been observed from the 

numerical investigation, shown in Table 1, is that some orbits (0.5, 0.5), (0.55, 0.5), (0.6, 0.5) are 

less chaotic for 1.09 ≤ λ ≤ 1.211. This means, when the population size of species are near to 0.5, 

the possibility of their coexistence becomes more certain. But when their population size differ 

significantly, such coexistence become unpredictable because of their chaotic evolution. In some 

cases like this iterations becomes overflows and numerical prediction would be impossible.     

 

 

      

3. Application of Indicators  FLI, SALI and DLI  
 

For clear identification of regular and chaotic orbits, some novel indicators, known as the Fast 

Lyapunov Indicators (FLI), the Smaller Alignment Indices (SALI) and the Dynamic Lyapunov 

Indicators (DLI), have been defined. These indicators could made studies on evolving systems 

more precise and meaningful. These have been discovered by various authors while studying 

discrete and continuous models of their interest. The concept of Fast Lyapunov Indicator (FLI) 

was introduced by Froeschle et al (1997) and applied again in their work Lega and  Froeschle 

(2002) and also, by Saha et ( 2006); Smaller Alignment Indices (SALI) introduced by Skokos 

(2001) and again  in the work Skokos et al (2004). More recently, the indicator named as  



 

 

6938                                                                                                  L. M. Saha
 
and Niteesh Sahni

 

 

 

Dynamic Lyapunov Indicator (DLI) has been introduced by Saha and Budhraja (2007) which 

again applied in the work by Budhraja (2008). It has been observed that DLI gives very clear 

indication of ordered and chaotic motion whenever applied. Definitions of FLI, SALI and DLI 

can be obtained from the articles of their respective introducers. However, we must keep in mind 

the properties of these indicators as follows: 

 

FLI‘s increase exponentially for chaotic orbits and linearly for regular orbits. 

SALI’s  fluctuates around a non-zero value for ordered orbits while it tends to zero for chaotic 

orbits. 

DLI’s ,  form a definite pattern, then the motion is regular and if they are distributed randomly, 

(with no definite pattern), then the motion is chaotic. 

 

 

Numerical Calculations for FLI, SALI and DLI: 

For our system (1.1) we have selected few orbits which evolve regularly or chaotically for some 

particular value of λ. For these orbits we made numerical calculations and draw graphs for above 

indicators. 

   

            

          
Fig.3.1: Phase plot and FLI, SALI , DLI plots of a regular orbit (0.5, 0.5) for λ = 1.2. The last 

figure shows the emergence of a pattern in DLI plot. 
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 Fig.3.2:  Phase plot and FLI, SALI , DLI plots of a chaotic orbit (0.4, 0.3) for λ = 1.095. The last 

figure shows randomly distributed points in the DLI plot. 

 

 

 

4. Discussions 

Bifurcation diagrams, Fig. 2.1 and Fig.2.2, give clear indication regarding evolutionary scenario 

of the system. These figures show the appearance of bistability. Evolution is here of very specific 

kind. We see first a cycle one which trifurcates as λ increases and then we observe doubling 

phenomena of three cycles for certain range of the parameter. Finally a chaotic state. From this, 

we again see one cycle. Further increase in λ results in some kind of brusts in numerical 

calculations. 

 

Lyapunov exponents and correlation dimensions are measure of chaos and their numerical 

values, when calculated for any orbit, gives clear idea of regular or chaotic nature of the orbit. As 

shown in Fig.2.3, Lyapunov exponents calculated for regular orbit are negative and those for 

chaotic orbit are positive. 
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Numerical calculations of correlation dimensions show some interesting results. Orbits are 

regular when initial values of species are nearby 0.5 for possible range of values of λ. For λ = 

1.1, orbits of (0.5, 0.5), (0.55, 0.5), (0.6, 0.5) are found regular whereas for same λ, the orbits 

(0.5, 4) obtained to be chaotic. Similar type of orbits also observed for other value of parameter 

λ. This provides an indication that the possibility of co-existence may happen if both the 

population starts nearby 0.5. This again leads to the situation of bistability.       

 

In Fig.3.1 and 3.2 we have plotted FLI, SALI and DLI, respectively, for a regular and a chaotic 

orbit.  No linear increment observed in FLI for the our model; hoever, it shows nearly 

exponential increase has been observed for chaotic case. SALI seems to be working for ordered 

as well for chaotic orbit. In case of DLI, one can see it is working perfectly as per its definition. 

DLI display a pattern for ordered orbit and randomly distributed points for chaotic orbit. As 

tested several times in past on various discrete systems, it reflects that DLI could be reliable 

indicator for distinguishing regularity and chaos. In a recent article Deleanu (2011) has applied 

DLI in a number of discrete systems and referred this indicator as a practical tool to distinguish 

ordered and chaotic orbits in dynamical systems. 
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