Isolated Points of Spectrum for

Quasi - * - Class A Operators

A. Sekar

Department of Mathematics
Sri Ramakrishna Engineering College
Vattamalaipalayam, Coimbatore - 641 022, Tamil Nadu, India
sekar110@gmail.com

C. V. Sesaiah

Department of Mathematics
Sri Ramakrishna Engineering College
Vattamalaipalayam, Coimbatore - 641 022, Tamil Nadu, India
cvseshaiah@gmail.com

D. Senthil Kumar

Post Graduate and Research Department of Mathematics
Government Arts College (Autonomous)
Coimbatore - 641 018, Tamil Nadu, India
senthilsenkumhari@gmail.com

P. Maheswari Naik

Department of Mathematics
Sri Ramakrishna Engineering College
Vattamalaipalayam, Coimbatore - 641 022, Tamil Nadu, India
maheswarinaik21@gmail.com
Abstract. Let T be a Quasi - $*$ - class A operator on a complex Hilbert space \mathcal{H} if $T^* (|T|^2 - |T^*|^2) T \geq 0$. In this paper, we prove that if E is the Riesz idempotent for a non-zero isolated point λ of the spectrum of $T \in$ Quasi - $*$ - class A operator, then E is self-adjoint and $EH = \ker(T - \lambda) = \ker(T - \lambda)^*$. We will also prove a necessary and sufficient condition for $T \otimes S$ to be quasi - $*$ - class A where T and S are both non-zero operators.

Mathematics Subject Classification: Primary 47A10; Secondary 47B20

Keywords: $*$ - paranormal operators, Weyl’s theorem, $*$ - class A operators, Quasi - $*$ - class A operators, generalized a - Weyl’s theorem, B - Fredholm, B - Weyl

1. Introduction

Let $B(\mathcal{H})$ denote the algebra of all bounded linear operators acting on an infinite dimensional separable Hilbert space \mathcal{H}. For a positive operators A and B, write $A \geq B$ if $A - B \geq 0$. If A and B are invertible and positive operators, it is well known that $A \geq B$ implies that $\log A \geq \log B$. However [2], $\log A \geq \log B$ does not necessarily imply $A \geq B$. A result due to Ando [5] states that for invertible positive operators A and B, $\log A \geq \log B$ if and only if $A^r \geq (A^2 B^r A^2)^{\frac{1}{r}}$ for all $r \geq 0$. For an operator T, let $U|T|$ denote the polar decomposition of T, where U is a partially isometric operator, $|T|$ is a positive square root of $T^* T$ and $\ker(T) = \ker(U) = \ker(|T|)$, where $\ker(S)$ denotes the kernel of operator S.

An operator $T \in B(\mathcal{H})$ is positive, $T \geq 0$, if $(Tx, x) \geq 0$ for all $x \in \mathcal{H}$, and posinormal if there exists a positive $\lambda \in B(\mathcal{H})$ such that $TT^* = T^* \lambda T$. Here λ is called interrupter of T. In other words, an operator T is called posinormal if $TT^* \leq c^2 T^* T$, where T^* is the adjoint of T and $c > 0$ [7]. An operator T is said to be heminormal if T is hyponormal and $T^* T$ commutes with TT^*. An operator T is said to be p - posinormal if $(TT^*)^p \leq c^2 (T^* T)^p$ for some $c > 0$. It is clear that 1 - posinormal is posinormal. An operator T is said to be p - hyponormal, for $p \in (0, 1)$, if $(T^* T)^p \geq (TT^*)^p$. An 1 -
isolated point of spectrum 6779

hyponormal operator is hyponormal which has been studied by many authors and it is known that hyponormal operators have many interesting properties similar to those of normal operators [19]. Furuta et al [9] have characterized class A operator as follows. An operator T belongs to class A if and only if $(T^*|T|^2)^{\frac{1}{2}} \geq T^*T$.

An operator T is said to be paranormal if $||T^2x|| \geq ||Tx||^2$ and \ast - paranormal if $||T^2x|| \geq ||T^*x||^2$ for all unit vector $x \in \mathcal{H}$. Recently, B. P. Duggal et al [8] have considered the new class of operators : An operator $T \in B(\mathcal{H})$ belongs to \ast - class A if $|T^2| \geq |T^*|^2$. The authors of [14] have extended \ast - class A operators to quasi- \ast - class A operators. An operator $T \in B(\mathcal{H})$ is said to be quasi- \ast - class A if $T^*|T|^2T \geq T^*|T^*|^2T$ and quasi- \ast - paranormal if $||T^*Tx||^2 \leq ||T^3x||||Tx||$ for all $x \in \mathcal{H}$. An operator T is said to be Quasi- \ast - class A [12] operator on a complex Hilbert space \mathcal{H} if $T^*|T^2| - |T^*|^2T \geq 0$.

As a further generalization, Mecheri [13] has introduced the class of k - quasi- \ast - class A operators. An operator T is said to be k - quasi- \ast - class A operator on a complex Hilbert space \mathcal{H} if $T^k(|T^2| - |T^*|^2)T^k \geq 0$ where k is a natural number.

An operator T is called normal if $T^*T = TT^*$ and (p,k) - quasihyponormal if $T^{*k}((T^*T)^p - (TT^*)^p)T^k \geq 0$ $(0 < p \leq 1, k \in \mathbb{N})$. A. Aluthge [1], B.C. Gupta [6], S.C. Arora and P. Arora [3] introduced p - hyponormal, p - quasihyponormal and k - quasihyponormal operators, respectively.

p - hyponormal $\subset p$ - posinormal $\subset (p,k)$ - quasiposinormal,

p - hyponormal $\subset p$ - quasihyponormal \subset

(p,k) - quasihyponormal $\subset (p,k)$ - quasiposinormal

and

hyponormal $\subset k$ - quasihyponormal $\subset (p,k)$ - quasihyponormal $\subset (p,k)$ - quasiposinormal

for a positive integer k and a positive number $0 < p \leq 1$.

If $T \in B(\mathcal{H})$, we shall write $N(T)$ and $R(T)$ for the null space and the range of T, respectively. Also, let $\sigma(T)$ and $\sigma_a(T)$ denote the spectrum and
the approximate point spectrum of T, respectively. An operator T is called Fredholm if $R(T)$ is closed, $\alpha(T) = \dim N(T) < \infty$ and $\beta(T) = \dim \mathcal{H}/R(T) < \infty$. Moreover if $i(T) = \alpha(T) - \beta(T) = 0$, then T is called Weyl. The essential spectrum $\sigma_e(T)$ and the Weyl $\sigma_W(T)$ are defined by

$$\sigma_e(T) = \{\lambda \in \mathbb{C} : T - \lambda \text{ is not Fredholm}\}$$

and

$$\sigma_W(T) = \{\lambda \in \mathbb{C} : T - \lambda \text{ is not Weyl}\},$$

respectively. It is known that $\sigma_e(T) \subset \sigma_W(T) \subset \sigma_e(T) \cup \text{acc } \sigma(T)$ where we write acc K for the set of all accumulation points of $K \subset \mathbb{C}$. If we write iso $K = K \setminus \text{acc } K$, then we let

$$\pi_{00}(T) = \{\lambda \in \text{iso } \sigma(T) : 0 < \alpha(T - \lambda) < \infty\}.$$

We say that Weyl’s theorem holds for T if

$$\sigma(T) \setminus \sigma_W(T) = \pi_{00}(T).$$

Let $\sigma_p(T)$ denotes the point spectrum of T, i.e., the set of its eigenvalues. Let $\sigma_{jp}(T)$ denotes the joint point spectrum of T. We note that $\lambda \in \sigma_{jp}(T)$ if and only if there exists a non-zero vector x such that $Tx = \lambda x$, $T^*x = \overline{\lambda}x$. It is evident that $\sigma_{jp}(T) \subset \sigma_p(T)$. It is well known that, if T is normal, then $\sigma_{jp}(T) = \sigma_p(T)$. If $T = U|T|$ is the polar decomposition of T and $\lambda = |\lambda|e^{i\theta}$ be the complex number, $|\lambda| > 0$, $|e^{i\theta}| = 1$. Then $\lambda \in \sigma_{jp}(T)$ if and only if there exist a non-zero vector x such that $Ux = e^{i\theta}$, $|T|x = |\lambda|x$. Let $\sigma_{ap}(T)$ denotes the approximate point spectrum of T, i.e., the set of all complex numbers λ which satisfy the following condition: there exists a sequence $\{x_n\}$ of unit vectors in \mathcal{H} such that $\lim_{n\to\infty}||(T - \lambda)x_n|| = 0$. It is evident that $\sigma_p(T) \subset \sigma_{ap}(T)$. Let $\sigma_{jap}(T)$ be the joint approximate point spectrum of T, then $\lambda \in \sigma_{jap}(T)$ if and only if there exists a sequence $\{x_n\}$ of unit vectors such that $\lim_{n\to\infty}||(T - \lambda)x_n|| = \lim_{n\to\infty}||(T^* - \overline{\lambda})x_n|| = 0$. It is evident that $\sigma_{jap}(T) \subset \sigma_{ap}(T)$ for all $T \in B(\mathcal{H})$. It is well known that, for a normal operator T, $\sigma_{jap}(T) = \sigma_{ap}(T) = \sigma(T)$.

An operator $T \in B(\mathcal{H})$ is said to have the single-valued extension property (or SVEP) if for every open subset G of \mathbb{C} and any analytic function $f : G \to \mathcal{H}$ such that $(T-z)f(z) \equiv 0$ on G, we have $f(z) \equiv 0$ on G. An operator $T \in B(\mathcal{H})$ is said to have Bishop’s property (β) if for every open subset G of \mathbb{C} and every sequence $f_n : G \to \mathcal{H}$ of \mathcal{H} - valued analytic functions such that $(T - z)f_n(z)$ converges uniformly to 0 in norm on compact subsets of G, $f_n(z)$ converges
uniformly to 0 in norm on compact subsets of G. An operator $T \in B(H)$ is said to have Dunford’s property (C) if $H_T(F)$ is closed for each closed subset F of \mathbb{C}. It is well known that

Bishop’s property (β) ⇒ Dunford’s property (C) ⇒ SVEP.

Let $T \in B(H)$ and let λ_0 be an isolated point of $\sigma(T)$. Then there exists a positive number $r > 0$ such that $\{\lambda \in \mathbb{C} : |\lambda - \lambda_0| \leq r\} \cap \sigma(T) = \{\lambda_0\}$. Let γ be the boundary of $\{\lambda \in \mathbb{C} : |\lambda - \lambda_0| \leq r\}$. Then

$$E = \frac{1}{2\pi i} \int_\gamma (\lambda - T)^{-1} d\lambda,$$

is called the Riesz idempotent of T for λ_0. Then it is well known that

$E^2 = E, \quad ET = TE, \quad \sigma(T|_{\text{ran}E}) = \{\lambda_0\} \quad \text{and} \quad \ker(T - \lambda_0 I) \subseteq \text{ran}E.$

In general, it is well known that the Riesz idempotent E is not an orthogonal projection and a necessary and sufficient condition for E to be orthogonal is that E is self-adjoint. In [15], Stampfli showed that if T satisfies the growth condition G_1, then E is self-adjoint and $E(H) = \ker(T - \lambda_0)$. Recently, Jeon and Kim [11] and Uchiyama [18] obtained Stampfli’s result for quasi-class A operators and paranormal operators. In general even if T is a paranormal operator, the Riesz idempotent E of T with respect to λ_0 is not necessarily self-adjoint. We show that if E is the Riesz idempotent for a nonzero isolated point λ_0 of the spectrum of a quasi-∗-class A operator T, then E is self-adjoint and $EH = \ker(T - \lambda_0) = \ker(T^* - \overline{\lambda_0}).$

2. Main Results

Jun Li and et al [12] have introduced quasi-∗-class A operators and have proved many interesting properties of it.

Lemma 2.1. ([12, Theorem 2.2, Theorem 2.3]) (1) Let $T \in B(H)$ be quasi-∗-class A operator and T does not have a dense range, then

$$T = \begin{pmatrix} A & B \\ 0 & 0 \end{pmatrix}$$

where $A = T|_{\text{ran}T}$ is the restriction of T to $\text{ran}T$ and $A \in \ast\ast$-class A operator. Moreover $\sigma(T) = \sigma(T_1) \cup \{0\}$.

(2) If T is an quasi-∗-class A operator and M is its invariant subspace, then the restriction $T|_M$ of T to M is also an quasi-∗-class A operator.
Lemma 2.2. [12, Theorem 2.4] Let $T \in B(H)$ is an quasi - * - class A operator. If $\lambda \neq 0$ and $(T - \lambda)x = 0$ for some $x \in H$, then $(T - \lambda)^*x = 0$.

Lemma 2.3. Let $T \in B(H)$ is an quasi - * - class A operator. Then T is isoloid.

Proof. Let $T \in B(H)$ is an quasi - * - class A operator with representation given in Lemma 2.1. Let z be an isolated point in $\sigma(T)$. Since $\sigma(T) = \sigma(T_1) \cup \{0\}$, z is an isolated point in $\sigma(T_1)$ or $z = 0$. If z isolated point in $\sigma(T_1)$, then $z \in \sigma_p(T_1)$. Assume that $z = 0$ and $z \notin \sigma(T_1)$. Then for $x \in \ker(T_3)$, $-T_1^{-1}T_2x \oplus x \in \ker T$. This completes the proof.

Theorem 2.4. Let $A \in B(H)$ is an quasi - * - class A operator and let λ be a non-zero isolated point of $\sigma(A)$. Let D_λ denote the closed disk that centered at λ such that $D_\lambda \cap \sigma(A) = \{\lambda\}$. Then the Riesz idempotent

$$E = \frac{1}{2\pi i} \int_{\partial D_\lambda} (\lambda - A)^{-1}d\lambda$$

satisfies

$$EH = \ker(A - \lambda) = \ker((T - \lambda)^*).$$

In particular, E is self adjoint.

Proof. If A is quasi - * - class A operator, then λ is an eigenvalue of A and $EH = \ker(A - \lambda)$ by Lemma 2.3. Since $\ker(A - \lambda) \subset \ker(A - \lambda)^*$ by Lemma 2.2, it suffices to show that $\ker(A - \lambda)^* \subset \ker(A - \lambda)$. Since $\ker(A - \lambda)$ is a reducing subspace of A by Lemma 2.2 and the restriction of a quasi - * - class A operator to its reducing subspaces is also a quasi - * - class A operator by Lemma 2.1, hence A can be written as follows: $A = \lambda \oplus A_1$ on $H = \ker(A - \lambda) \oplus (\ker(A - \lambda))^\perp$, where A_1 is *-class A with $\ker(A_1 - \lambda) = \{0\}$. Since

$$\lambda \in \sigma(A) = \{\lambda\} \cup \sigma(A_1)$$

is isolated, the only two cases occur, one is $\lambda \notin \sigma(A_1)$ and the other is that λ is an isolated point of $\sigma(A_1)$ and this contradicts the fact that $\ker(A_1 - \lambda) = \{0\}$. Since A_1 is invertible as an operator on $(\ker(A - \lambda))^\perp$, $\ker(A - \lambda) = \ker(A - \lambda)^*$.

Next, we show that E is self-adjoint. Since

$$EH = \ker(A - \lambda) = \ker(A - \lambda)^*,$$
we have \((z - A)^{-1}E = (z - \lambda)^{-1}E\). Therefore

\[
E^*E = -\frac{1}{2\pi i} \int_{\partial D} ((z - A)^{-1}E \, dz
= -\frac{1}{2\pi i} \int_{\partial D} (z - A)^{-1}E \, dz
= \left(\frac{1}{2\pi i} \int_{\partial D} (z - A)^{-1} \, dz\right) E
= E.
\]

This completes the proof. \(\square\)

3. Tensor product of quasi - * - class A operators

The tensor products \(T \otimes S\) preserves many properties of \(T, S \in B(\mathcal{H})\), but by no means all of them. Thus, whereas the normaloid property is invariant under tensor products; again, whereas \(T \otimes S\) is normal if and only if \(T\) and \(S\) are normal [10, 16], there exist paranormal operators \(T\) and \(S\) such that \(T \otimes S\) is not paranormal [4]. It is shown in [11] that \(T \otimes S\) is quasi-class A if and only if \(S, T\) are quasi-class A operators. In the following theorem we will prove a necessary and sufficient condition for \(T \otimes S\) to be quasi - * - class A operator where \(T\) and \(S\) are both non-zero operators.

Recall that \((T \otimes S)^*(T \otimes S) = T^*T \otimes S^*S\) and so, by the uniqueness of positive square roots, \(|T \otimes S|^r = |T|^r \otimes |S|^r\) for any positive rational number \(r\). From the density of the rationales in the real, we obtain \(|T \otimes S|^p = |T|^p \otimes |S|^p\) for any positive real number \(p\). If \(T_1 \geq T_2\) and \(S_1 \geq S_2\), then \(T_1 \otimes S_1 \geq T_2 \otimes S_2\) (see, [17])

Theorem 3.1. Let \(S, T \in B(\mathcal{H})\) be non-zero operators. Then \(T \otimes S\) is quasi - * - class A operator if and only if one of the following holds:

a) \(S\) and \(T\) are quasi - * - class A operators.

b) \(S^2 = 0\) or \(T^2 = 0\).

Proof. Since \(T \otimes S\) is quasi - * - class A operator if and only if \((T \otimes S)^*(|(T \otimes S)|^2 - (|(T \otimes S)|^2))((T \otimes S) \geq 0\)
\[\iff T^*|T^2| - |T^*|^2 T \otimes S^*|S^2|S + T^*|T^*|^2 T \otimes S^* (|S^2| - |S^*|^2)S \geq 0.\]
Hence the sufficiency is clear. Conversely, assume that $T \otimes S$ is quasi - $*$ - class A operator. Then for every $x, y \in \mathcal{H}$ we have

$$
\langle T^* (|T^2| - |T^*|^2)Tx, x \rangle \langle S^* |S^2|Sy, y \rangle + \langle T^* |T^*|^2Tx, x \rangle \langle S^* (|S^2| - |S^*|^2)Sy, y \rangle \geq 0
$$

(3.1)

It suffices to prove that if (a) does not hold, then (b) holds. Suppose that $T^2 \neq 0$ and $S^2 \neq 0$.

To the contrary, assume that T is not a quasi - $*$ - class A operator, then there exists $x_0 \in \mathcal{H}$ such that

$$
\langle T^* (|T^2| - |T^*|^2)Tx_0, x_0 \rangle = \alpha < 0 \quad \text{and} \quad \langle T^* |T^*|^2Tx_0, x_0 \rangle = \beta > 0.
$$

From (3.1) we have

$$
\alpha + \beta \langle S^* |S^2|Sy, y \rangle \geq \beta \langle S^* |S^*|^2Sy, y \rangle
$$

(3.2)

for all $y \in \mathcal{H}$.

Thus S is quasi - $*$ - class A operator since $\alpha + \beta \leq \beta$. Using the Hölder-McCarthy inequality we have

$$
\langle S^* |S^2|Sy, y \rangle = \langle (S^2S^2)^{1/2}Sy, Sy \rangle \leq ||Sy||^{2(1-1/2)} \langle S^2S^2Sy, Sy \rangle^{1/2} = ||Sy|| ||S^3y||
$$

and

$$
\langle S^* |S^*|^2Sy, y \rangle = \langle SS^*Sy, Sy \rangle = \langle (S^*S)y, S^*Sy \rangle
$$

$$
= ||S^*Sy||^2.
$$

Thus

$$
(\alpha + \beta)||Sy|| ||S^3y|| \geq \beta ||S^*Sy||^2.
$$

(3.3)

Since S is a quasi - $*$ - class A operator, Lemma 2.1 imply that

$$
S = \begin{pmatrix} S_1 & S_2 \\ 0 & 0 \end{pmatrix} \quad \text{on} \quad H = \text{ran}(S^k) \oplus \ker S^{*k}.
$$

Then S_1 is $*$ - class A, $S_3^k = 0$ and $\sigma(S) = \sigma(S_1) \cup \{0\}$. Therefore (3.3) implies

$$
(\alpha + \beta)||S_1\eta|| ||S_3^3 \eta|| \geq \beta ||S_1^*S_1\eta||^2
$$

for all $\eta \in \text{ran} S^k$. Since S_1 is $*$ - class A and $*$ - class A is normaloid. Thus taking supremum on both sides of the above inequality, we have

$$
(\alpha + \beta)||S_1||^4 \geq \beta ||S_1^*S_1||^2.
$$
Therefore $S_1 = 0$. Since

$$S^2 = \begin{pmatrix} 0 & S_2 \\ 0 & 0 \end{pmatrix}^2 = 0.$$

Hence $S^{k+1} = 0$. This contradicts the assumption $S^2 \neq 0$. Hence T must be a quasi - * - class A operator. A similar argument shows that S is also quasi - * - class A operator. This completes the proof.

References

Received: September, 2012