Independent Systems of Semigroup Relations and Descriptions of Robotic Systems

Vladimir Popov

Department of Intelligent Systems and Robotics
Ural Federal University
620083 Ekaterinburg, Russia
Vladimir.Popov@usu.ru

Abstract

In this paper, we consider the problem of derivability of semigroup axioms. In particular, we consider an example of system of semigroup relations without independent subsystem.

Keywords: problem of derivability of axioms, semigroup, independent axiom systems, robotic system

Many algorithmic problems of robotics received a lot of attention recently (see e.g. [1] – [7]). The representation of robotic systems plays an important role in solutions of robotic tasks (see e.g. [8]).

There is a natural way to represent a robotic system by elements of some semigroup. In particular, let

\{q[1], q[2], \ldots, q[n]\}

be the system of states of a robot,

\{a[1], a[2], \ldots, a[m]\}

be the system of actions of a robot. An action \(a[i]\) causes some state transition from the current state \(q[j]\) to the next state \(q[k]\). This transition can be described by a semigroup relation \(q[j]a[i] = q[k]\). System of such relation we can consider as a description of the robotic system.

As a simple example of such description, we can consider a switch with two states \(q[1], q[2]\) and the only action \(a\). In particular, such switch can be described by the following semigroup:

An axiom system is satisfiable if it has a model. Let \(\Sigma = \{A[1], A[2], \ldots\} \) be a satisfiable system of axioms over a given collection of primitives. An axiom \(A[i] \in \Sigma, i \in \{1, 2, \ldots\} \), is independent if the axiom system

\[
(\Sigma \setminus \{A[i]\}) \cup \{\neg A[i]\}
\]

is satisfiable. The axiom system \(\Sigma \) is independent if each of its axioms is independent.

Note that there is considerable interest in investigation of independent systems of axioms (see e.g. [9]), relations (see e.g. [10]), and identities (see e.g. [11, 12, 13]) for groups, semigroups, rings, and other algebraic systems. In this paper, we consider not independent systems of relations for semigroups.

Let \(\Sigma \) be a system of semigroup relations. Let \(A \in \Sigma \). If \(A \) can be derived from \(\Sigma \setminus \{A\} \), then it is natural to consider \(\Sigma \setminus \{A\} \) instead \(\Sigma \). In general case, we can try to construct an independent system \(\Pi \subseteq \Sigma \) such that \(A \) can be derived from \(\Pi \) for any \(A \in \Sigma \setminus \Pi \). In particular, it is easy to check that \(T \) is given by independent system of relations.

Theorem. There is a system of semigroup relations \(\Sigma \) such that \(\Pi \) is not independent for any \(\Pi \subseteq \Sigma \).

Proof. Let

\[
S = \langle a, b, 0 \mid ab^n a = 0, b^2 ab = ba, a0 = 0a = b0 = 0b = 0, n \geq 1 \rangle
\]

be a semigroup. Let

\[
\Sigma[k] = \{ab^n a = 0, b^2 ab = ba, a0 = 0a = b0 = 0b = 0, n \geq k\}.
\]

Since

\[
\Sigma[k] \models ab^k a = 0,
\]

it is clear that

\[
\Sigma[k] \models ab^k ab = 0b = 0.
\]

In view of \(b^2 ab = ba \), for any \(k > 1 \),

\[
\Sigma[k] \models ab^k ab = 0
\]

implies

\[
\Sigma[k] \models ab^{k-1} a = 0.
\]

It is easy to see that \(\Sigma[k] \models \Sigma[p] \) for any \(k \geq p \). Therefore, \(\Sigma[k] \) is not independent for any \(k \).
References

Received: September 20, 2012