Falling Pseudo d-Ideals and d-Subalgebras
in Pseudo d-Algebras

Young Bae Jun

Department of Mathematics Education (and RINS)
Gyeongsang National University, Chinju 660-701, Korea
skywine@gmail.com

Sun Shin Ahn

Department of Mathematics Education
Dongguk University, Seoul 100-715, Korea
sunshine@dongguk.edu

Kyoung Ja Lee

Department of Mathematics Education
Hannam University, Daejeon 306-791, Korea
lsj1109@hotmail.com

Abstract

Based on the theory of a falling shadow which was first formulated by
Wang [15], a theoretical approach of the pseudo ideal structure in pseudo
d-algebras is established. Several properties are investigated, and rela-
tions among a falling pseudo d-subalgebra, a falling pseudo BCK-ideal
and a falling pseudo d-ideal are discussed. A characterization of a falling
pseudo d-ideal is provided. Conditions for a falling shadow to be a falling
pseudo BCK-ideal, and for a falling pseudo BCK-ideal to be a falling
pseudo d-ideal are considered.

Mathematics Subject Classification: 06F35, 03G25, 08A72

Keywords: Pseudo d-algebra, (Falling) pseudo d-subalgebra, (Falling)
pseudo d-ideal, (Falling) pseudo BCK-ideal.

*Corresponding author.
1 Introduction

Imai and Iséki introduced two classes of abstract algebras: BCK-algebras and BCI-algebras ([3], [4]). It is known that the class of BCK-algebras is a proper subclass of the class of BCI-algebras. BCK-algebras have several connections with other areas of investigation, such as: lattice ordered groups, MV-algebras, Wajsberg algebras, and implicative commutative semigroups. Font et al. ([1]) have discussed Wajsberg algebras which are term-equivalent to MV-algebras. Neggers and Kim ([10]) introduced the notion of d-algebras which is another useful generalization of BCK-algebras. They investigated several relations between d-algebras and BCK-algebras as well as several other relations between d-algebras and oriented digraphs. After that, some further aspects were studied in [8] and [11]. Neggers et al. ([9]) introduced the concept of d-fuzzy function which generalizes the concept of fuzzy subalgebra to a much larger class of functions in a natural way. In addition, they discussed a method of fuzzification of a wide class of algebraic systems onto $[0, 1]$ along with some consequences. Jun et al. [7] introduced the notion of a pseudo d-algebra as a generalization of the idea of a d-algebra. They considered the notions of pseudo d-subalgebras, pseudo BCK-ideals and pseudo d-ideals of pseudo d-algebras.

In this paper, we establish a theoretical approach to define a falling pseudo d-subalgebra, a falling pseudo d-ideal and a falling pseudo BCK-ideal in pseudo d-algebras based on the theory of falling shadows which was first formulated by Wang [15], and investigate several related properties. We provide relations among a falling pseudo d-subalgebra, a falling pseudo d-ideal and a falling pseudo BCK-ideal. We consider a characterization of a falling pseudo d-ideal. We give conditions for a falling shadow to be a falling pseudo BCK-ideal, and for a falling pseudo BCK-ideal to be a falling pseudo d-ideal.

2 Preliminaries

Based on the papers [7, 11], we display basic definitions and results.

A d-algebra is a non-empty set X with a constant 0 and a binary operation “\ast” satisfying the following axioms:

(I) $x \ast x = 0,$

(II) $0 \ast x = 0,$

(III) $x \ast y = 0$ and $y \ast x = 0$ imply $x = y$

for all x, y in X.

A pseudo d-algebra is an algebra $(X; \rightarrow; \leadsto; 0)$ of type $(2, 2, 0)$ in which the following axioms hold for all $x, y \in X$:

(a1) $x \rightarrow x = x \leadsto x = 0$,

(a2) $0 \rightarrow x = 0 \leadsto x = 0$,

(a3) $x \rightarrow y = y \leadsto x = 0$ implies $x = y$.

Note that if $(X; \rightarrow, 0)$ is a d-algebra, then letting $x \leadsto y = x \rightarrow y$, produces a pseudo d-algebra $(X; \rightarrow, \leadsto, 0)$. Hence every d-algebra is a pseudo d-algebra in a natural way.

A nonempty subset S of X is called a pseudo d-subalgebra of X if $x \rightarrow y \in S$ and $x \leadsto y \in S$ whenever $x, y \in S$.

A subset I of X is called a pseudo BCK-ideal of X if it satisfies:

(b1) $0 \in I,$

(b2) $(\forall x \in X) (\forall y \in I) (x \rightarrow y \in I$ and $x \leadsto y \in I \Rightarrow x \in I).$

A subset I of X is called a pseudo d-ideal of X if it satisfies (b2) and

(b3) $(\forall x, y \in X) (x \in I \Rightarrow x \rightarrow y \in I$ and $x \leadsto y \in I).$
We now display the basic theory on falling shadows. We refer the reader to the papers [2, 12, 13, 14, 15] for further information regarding the theory of falling shadows.

Given a universe of discourse U, let $P(U)$ denote the power set of U. For each $u \in U$, let

$$\dot{u} := \{E \mid u \in E \text{ and } E \subseteq U\}, \quad (2.1)$$

and for each $E \in P(U)$, let

$$\dot{E} := \{\dot{u} \mid u \in E\}. \quad (2.2)$$

An ordered pair $(P(U), B)$ is said to be a hyper-measurable structure on U if B is a σ-field in $P(U)$ and $\dot{U} \subseteq B$. Given a probability space (Ω, A, P) and a hyper-measurable structure $(P(U), B)$ on U, a random set on U is defined to be a mapping $\xi : \Omega \rightarrow P(U)$ which is A-B measurable, that is,

$$(\forall C \in B) (\xi^{-1}(C) = \{\omega \mid \omega \in \Omega \text{ and } \xi(\omega) \in C\} \in A). \quad (2.3)$$

Suppose that ξ is a random set on U. Let

$$\tilde{H}(u) := P(\omega \mid u \in \xi(\omega)) \text{ for each } u \in U.$$

Then \tilde{H} is a kind of fuzzy set in U. We call \tilde{H} a falling shadow of the random set ξ, and ξ is called a cloud of \tilde{H}.

For example, $(\Omega, A, P) = ([0, 1], A, m)$, where A is a Borel field on $[0, 1]$ and m is the usual Lebesgue measure. Let \tilde{H} be a fuzzy set in U and $\tilde{H}_t := \{u \in U \mid \tilde{H}(u) \geq t\}$ be a t-cut of \tilde{H}. Then

$$\xi : [0, 1] \rightarrow P(U), \ t \mapsto \tilde{H}_t$$

is a random set and ξ is a cloud of \tilde{H}. We shall call ξ defined above as the cut-cloud of \tilde{H} (see [2]).

3 Falling pseudo d-subalgebras/ideals

In what follows let X denote a pseudo d-algebra unless otherwise specified.

Definition 3.1. For a probability space (Ω, A, P) and a random set $\xi : \Omega \rightarrow P(X)$, the falling shadow \tilde{H} of ξ is called a **falling pseudo d-subalgebra** (resp. **falling pseudo BCK-ideal** and **falling pseudo d-ideal**) of X if $\xi(\omega)$ is a pseudo d-subalgebra (resp. pseudo BCK-ideal and pseudo d-ideal) of X for any $\omega \in \Omega$ with $\xi(\omega) \neq \emptyset$.

Obviously, every falling pseudo d-ideal is a falling pseudo d-subalgebra, but the converse is not true as seen in the following example.
Example 3.2. Let $X := \{0, a, b, c\}$ be a set with the following two Cayley tables:

\[
\begin{array}{cccc}
\rightarrow & 0 & a & b & c \\
0 & 0 & 0 & 0 & 0 \\
a & a & 0 & 0 & 0 \\
b & b & b & 0 & b \\
c & c & c & a & 0 \\
\end{array}
\quad \quad
\begin{array}{cccc}
\leadsto & 0 & a & b & c \\
0 & 0 & 0 & 0 & 0 \\
a & a & 0 & 0 & c \\
b & b & b & 0 & 0 \\
c & c & c & 0 & 0 \\
\end{array}
\]

Then $(X; \rightarrow, 0)$ and $(X; \leadsto, 0)$ are not d-algebras, but $(X; \rightarrow, \leadsto, 0)$ is a pseudo d-algebra (see [7]). For a probability space $(\Omega, A, P) = ([0, 1], A, m)$, define a random set

\[
\xi : \Omega \to \mathcal{P}(X), \quad \omega \mapsto \begin{cases}
\{0, a\} & \text{if } t \in [0, 0.6), \\
X & \text{if } t \in [0.6, 0.8), \\
\emptyset & \text{if } t \in [0.8, 1].
\end{cases}
\]

Then the falling shadow \tilde{H} of ξ is a falling pseudo d-subalgebra of X. If we take $t \in [0, 0.6)$, then $\xi(t) = \{0, a\}$ is not a pseudo d-ideal of X. Hence \tilde{H} is not a falling pseudo d-ideal of X.

We provide an example of a falling pseudo d-ideal which is not a falling pseudo BCK-ideal.

Example 3.3. Let $X := \{0, a, b, c\}$ be a set with the following two Cayley tables:

\[
\begin{array}{cccc}
\rightarrow & 0 & a & b & c \\
0 & 0 & 0 & 0 & 0 \\
a & a & 0 & 0 & a \\
b & b & 0 & 0 & b \\
c & c & c & a & 0 \\
\end{array}
\quad \quad
\begin{array}{cccc}
\leadsto & 0 & a & b & c \\
0 & 0 & 0 & 0 & 0 \\
a & a & 0 & a & a \\
b & b & b & 0 & 0 \\
c & c & c & 0 & 0 \\
\end{array}
\]

Then $(X; \rightarrow, 0)$ and $(X; \leadsto, 0)$ are not d-algebras, but $(X; \rightarrow, \leadsto, 0)$ is a pseudo d-algebra (see [7]). For a probability space $(\Omega, A, P) = ([0, 1], A, m)$, define a random set

\[
\xi : \Omega \to \mathcal{P}(X), \quad \omega \mapsto \begin{cases}
\{0, a\} & \text{if } t \in [0, 0.7), \\
\emptyset & \text{if } t \in [0.7, 0.8), \\
X & \text{if } t \in [0.8, 1].
\end{cases}
\]

Then the falling shadow \tilde{H} of ξ is a falling pseudo d-ideal of X, but not a falling pseudo BCK-ideal of X.
The following example shows that any falling pseudo BCK-ideal is neither a falling pseudo d-subalgebra nor a falling pseudo d-ideal.

Example 3.4. Let $X := \{0, a, b, c\}$ be a set with the following two Cayley tables:

<table>
<thead>
<tr>
<th>\rightarrow</th>
<th>0</th>
<th>a</th>
<th>b</th>
<th>c</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>a</td>
<td>0</td>
<td>0</td>
<td>a</td>
<td>a</td>
</tr>
<tr>
<td>b</td>
<td>b</td>
<td>0</td>
<td>0</td>
<td>b</td>
</tr>
<tr>
<td>c</td>
<td>c</td>
<td>c</td>
<td>b</td>
<td>0</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>\Rightarrow</th>
<th>0</th>
<th>a</th>
<th>b</th>
<th>c</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>a</td>
<td>a</td>
<td>a</td>
<td>0</td>
<td>a</td>
</tr>
<tr>
<td>b</td>
<td>b</td>
<td>b</td>
<td>0</td>
<td>a</td>
</tr>
<tr>
<td>c</td>
<td>c</td>
<td>c</td>
<td>c</td>
<td>0</td>
</tr>
</tbody>
</table>

Then $(X; \rightarrow, 0)$ and $(X; \Rightarrow, 0)$ are not d-algebras, but $(X; \rightarrow, \Rightarrow, 0)$ is a pseudo d-algebra. For a probability space $(\Omega, A, P) = ([0, 1], A, m)$, define a random set

$$\xi : \Omega \rightarrow P(X), \; \omega \mapsto \begin{cases} \{0, b, c\} & \text{if } t \in [0, 0.7), \\ X & \text{if } t \in [0.7, 0.9), \\ \emptyset & \text{if } t \in [0.9, 1]. \end{cases}$$

Then the falling shadow \tilde{H} of ξ is a falling pseudo BCK-ideal of X. If we take $t \in [0, 0.7)$, then $\xi(t) = \{0, b, c\}$ is not a pseudo d-subalgebra of X since $b \rightarrow c = b \in \{0, b, c\}$ and $b \Rightarrow c = a \notin \{0, b, c\}$. Hence \tilde{H} is not a falling pseudo d-subalgebra of X. Also $\xi(t)$ is not a pseudo d-ideal of X, since $b \rightarrow c = b \in \{0, b, c\}$ but $b \Rightarrow c = a \notin \{0, b, c\}$. Hence \tilde{H} is not a falling pseudo d-ideal of X.

The following example shows that any falling pseudo d-subalgebra is not a falling pseudo BCK-ideal.

Example 3.5. Consider a pseudo d-algebra $X := \{0, a, b, c\}$ as in Example 3.3. For a probability space $(\Omega, A, P) = ([0, 1], A, m)$, define a random set

$$\xi : \Omega \rightarrow P(X), \; \omega \mapsto \begin{cases} \{0, a, b\} & \text{if } t \in [0, 0.5), \\ \emptyset & \text{if } t \in [0.5, 0.8), \\ X & \text{if } t \in [0.8, 1]. \end{cases}$$

Then the falling shadow \tilde{H} of ξ is a falling pseudo d-subalgebra of X. If we take $t \in [0, 0.5)$, then $\xi(t) = \{0, a, b\}$ is not a pseudo BCK-ideal of X, since $c \rightarrow b = a, c \Rightarrow b = 0 \in \{0, a, b\}$, but $c \notin \{0, a, b\}$. Hence \tilde{H} is not a falling pseudo BCK-ideal of X.

Definition 3.6. If a pseudo d-algebra X satisfies the following condition:
\[(\forall x, y \in X) ((x \rightarrow y) \leadsto x = 0 \text{ and } (x \leadsto y) \rightarrow x = 0),\]
then we say X is a pseudo d^*-algebra.

Example 3.7. Let $X := \{0, a, b, c\}$ be a set with the following two Cayley tables:

<table>
<thead>
<tr>
<th>\rightarrow</th>
<th>0</th>
<th>a</th>
<th>b</th>
<th>c</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>a</td>
<td>a</td>
<td>0</td>
<td>0</td>
<td>a</td>
</tr>
<tr>
<td>b</td>
<td>b</td>
<td>0</td>
<td>0</td>
<td>b</td>
</tr>
<tr>
<td>c</td>
<td>c</td>
<td>c</td>
<td>a</td>
<td>0</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>\leadsto</th>
<th>0</th>
<th>a</th>
<th>b</th>
<th>c</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>a</td>
<td>a</td>
<td>0</td>
<td>0</td>
<td>a</td>
</tr>
<tr>
<td>b</td>
<td>b</td>
<td>b</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>c</td>
<td>c</td>
<td>c</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

Then $(X; \rightarrow, 0)$ and $(X; \leadsto, 0)$ are not d-algebras, but $(X; \rightarrow, \leadsto, 0)$ is a pseudo d-algebra which is also a pseudo d^*-algebra.

Theorem 3.8. In a pseudo d^*-algebra, every falling pseudo BCK-ideal is a falling pseudo d-ideal.

Proof. Let \tilde{H} be a falling pseudo BCK-ideal of a pseudo d^*-algebra X. Then $\xi(\omega)$ is a pseudo BCK-ideal of X for any $\omega \in \Omega$ with $\xi(\omega) \neq \emptyset$. Let $x, y \in X$ and $\omega \in \Omega$ be such that $x \in \xi(\omega)$. Since X is a d^*-algebra, we have $(x \rightarrow y) \leadsto x = 0 \in \xi(\omega)$ and $(x \leadsto y) \rightarrow x = 0 \in \xi(\omega)$ for all $x, y \in X$. Using (b2), we get $x \rightarrow y \in \xi(\omega)$ and $x \leadsto y \in \xi(\omega)$ for all $y \in X$. Hence $\xi(\omega)$ is a pseudo d-ideal of X, and thus \tilde{H} is a falling pseudo d-ideal of X.

Corollary 3.9. In a pseudo d^*-algebra, every falling pseudo BCK-ideal is a falling pseudo d-subalgebra.

The following example shows that there exists a falling pseudo d-subalgebra which is not a falling pseudo BCK-ideal in pseudo d^*-algebras.

Example 3.10. Consider a pseudo d^*-algebra $X = \{0, a, b, c\}$ as in Example 3.7. For a probability space $(\Omega, A, P) = ([0, 1], A, m)$, define a random set

$$\xi : \Omega \rightarrow P(X), \quad \omega \mapsto \begin{cases}
\{0, a, b\} & \text{if } t \in [0, 0.7), \\
X & \text{if } t \in [0.7, 0.8), \\
\emptyset & \text{if } t \in [0.8, 1].
\end{cases}$$

Then the falling shadow \tilde{H} of ξ is a falling pseudo d-subalgebra of X. If we take $t \in [0, 0.7)$, then $\xi(t) = \{0, a, b\}$ is not a pseudo BCK-ideal of X since $c \rightarrow b = a, c \leadsto b = 0 \in \{0, a, b\}$ and $c \notin \{0, a, b\}$. Hence \tilde{H} is not a falling pseudo BCK-ideal of X.

Let (Ω, A, P) be a probability space and \tilde{H} a falling shadow of a random set $\xi : \Omega \to \mathcal{P}(X)$. For any $x \in X$, let
\[\Omega(x; \xi) := \{ \omega \in \Omega \mid x \in \xi(\omega) \} \]
Then $\Omega(x; \xi) \in A$.

Lemma 3.11. If \tilde{H} is a falling pseudo d-subalgebra of X then
\[(\forall x \in X) \ (\Omega(x; \xi) \subseteq \Omega(0; \xi)) \]
(3.1)

Proof. If $\Omega(x; \xi) = \emptyset$, then it is clear. Assume that $\Omega(x; \xi) \neq \emptyset$ and let $\omega \in \Omega$ be such that $\omega \in \Omega(x; \xi)$. Then $x \in \xi(\omega)$, and so $0 = x \to x = x \sim x \in \xi(\omega)$ since $\xi(\omega)$ is a pseudo d-subalgebra of X. Hence $\omega \in \Omega(0; \xi)$, and thus $\Omega(x; \xi) \subseteq \Omega(0; \xi)$ for all $x \in X$. \[\square\]

Corollary 3.12. If \tilde{H} is a falling pseudo d-ideal of X, then (3.1) is valid.

Theorem 3.13. Let \tilde{H} be a falling shadow of a random set ξ on X. Then \tilde{H} is a falling pseudo d-ideal of X if and only if the following conditions are valid:

(a) $\ (\forall x, y \in X) \ (\Omega(x \to y; \xi) \cap \Omega(y; \xi) \cap \Omega(x \sim y; \xi) \subseteq \Omega(x; \xi))$,

(b) $\ (\forall x, y \in X) \ (\Omega(x; \xi) \subseteq \Omega(x \to y; \xi) \cap \Omega(x \sim y; \xi))$.

Proof. Suppose that \tilde{H} is a falling pseudo d-ideal of X. Let $x, y \in X$ and $\omega \in \Omega$. If $\omega \in \Omega(x \to y; \xi) \cap \Omega(y; \xi) \cap \Omega(x \sim y; \xi)$, then $y \in \xi(\omega)$, $x \to y \in \xi(\omega)$ and $x \sim y \in \xi(\omega)$. Since $\xi(\omega)$ is a pseudo d-ideal of X, it follows from (b2) that $x \in \xi(\omega)$ so that $\omega \in \Omega(x; \xi)$. Hence
\[\Omega(x \to y; \xi) \cap \Omega(y; \xi) \cap \Omega(x \sim y; \xi) \subseteq \Omega(x; \xi). \]

If $\omega \in \Omega(x; \xi)$, then $x \in \xi(\omega)$ and so $x \to y \in \xi(\omega)$ and $x \sim y \in \xi(\omega)$ by (b3). Hence $\omega \in \Omega(x \to y; \xi) \cap \Omega(x \sim y; \xi)$, and thus $\Omega(x; \xi) \subseteq \Omega(x \to y; \xi) \cap \Omega(x \sim y; \xi)$.

Conversely, suppose that two conditions (a) and (b) are valid. Let $x, y \in X$ and $\omega \in \Omega$ be such that $x \to y \in \xi(\omega)$, $x \sim y \in \xi(\omega)$ and $y \in \xi(\omega)$. Then $\omega \in \Omega(x \sim y; \xi)$, $\omega \in \Omega(x \sim y; \xi)$ and $\omega \in \Omega(y; \xi)$. It follows from (a) that
\[\omega \in \Omega(x \to y; \xi) \cap \Omega(y; \xi) \cap \Omega(x \sim y; \xi) \subseteq \Omega(x; \xi) \]
so that $x \in \xi(\omega)$. Now assume that $x \in \xi(\omega)$ for every $x \in X$ and $\omega \in \Omega$. Then
\[\omega \in \Omega(x; \xi) \subseteq \Omega(x \to y; \xi) \cap \Omega(x \sim y; \xi) \]
for all $y \in X$ by (b). Hence $x \to y \in \xi(\omega)$ and $x \sim y \in \xi(\omega)$ for all $y \in X$. Therefore \tilde{H} is a falling pseudo d-ideal of X. \[\square\]
Corollary 3.14. For a falling shadow \(\tilde{H} \) of a random set \(\xi \) on \(X \), if the conditions (a) and (b) in Theorem 3.13 hold, then \(\tilde{H} \) is a falling pseudo \(d \)-ideal of \(X \).

Proposition 3.15. For a falling shadow \(\tilde{H} \) of a random set \(\xi \) on \(X \), if \(\tilde{H} \) is a falling pseudo \(BCK \)-ideal or a falling pseudo \(d \)-ideal of \(X \), then

\[
(\forall x, y \in X) \ (x \rightarrow y = 0 = x \rightsquigarrow y \Rightarrow \Omega(y; \xi) \subseteq \Omega(x; \xi)).
\]

(3.2)

Proof. Assume that \(\tilde{H} \) is a falling pseudo \(d \)-ideal of \(X \). Let \(x, y \in X \) and \(\omega \in \Omega \) be such that \(x \rightarrow y = 0 = x \rightsquigarrow y \) and \(\omega \in \Omega(y; \xi) \). Then \(y \in \xi(\omega) \) and \(\omega \in \Omega(0; \xi) \) by Corollary 3.12. Hence \(x \rightarrow y = 0 \in \xi(\omega) \) and \(x \rightsquigarrow y = 0 \in \xi(\omega) \). Since \(\xi(\omega) \) is a pseudo \(d \)-ideal of \(X \), it follows from (b2) that \(x \in \xi(\omega) \) so that \(\omega \in \Omega(x; \xi) \). Therefore \(\Omega(y; \xi) \subseteq \Omega(x; \xi) \) for all \(x, y \in X \) with \(x \rightarrow y = 0 = x \rightsquigarrow y \).

Now suppose that \(\tilde{H} \) is a falling pseudo \(BCK \)-ideal of \(X \). Let \(x, y \in X \) and \(\omega \in \Omega \) be such that \(x \rightarrow y = 0 = x \rightsquigarrow y \) and \(\omega \in \Omega(y; \xi) \). Then \(y \in \xi(\omega) \) and \(x \rightarrow y = x \rightsquigarrow y = 0 \in \xi(\omega) \) by (b1). It follows from (b2) that \(x \in \xi(\omega) \) so that \(\omega \in \Omega(x; \xi) \). Hence \(\Omega(y; \xi) \subseteq \Omega(x; \xi) \) for all \(x, y \in X \) with \(x \rightarrow y = 0 = x \rightsquigarrow y \).

\(\square \)

Proposition 3.16. For a falling shadow \(\tilde{H} \) of a random set \(\xi \) on \(X \), if \(\tilde{H} \) is a falling pseudo \(BCK \)-ideal or a falling pseudo \(d \)-ideal of \(X \), then

\[
(\forall x, y \in X) \ (\Omega(x \rightarrow y; \xi) \cap \Omega(y; \xi) \cap \Omega(x \rightsquigarrow y; \xi) \subseteq \Omega(x; \xi)),
\]

(3.3)

Proof. Let \(x, y \in X \) and \(\omega \in \Omega \) be such that \(\omega \in \Omega(x \rightarrow y; \xi) \cap \Omega(y; \xi) \cap \Omega(x \rightsquigarrow y; \xi) \). Then \(x \rightarrow y \in \xi(\omega) \), \(y \in \xi(\omega) \) and \(x \rightsquigarrow y \in \xi(\omega) \). Since \(\xi(\omega) \) is a pseudo \(BCK \)-ideal or a pseudo \(d \)-ideal of \(X \), it follows from (b2) that \(x \in \xi(\omega) \) so that \(\omega \in \Omega(x; \xi) \). Hence

\[
\Omega(x \rightarrow y; \xi) \cap \Omega(y; \xi) \cap \Omega(x \rightsquigarrow y; \xi) \subseteq \Omega(x; \xi)
\]

for all \(x, y \in X \).

\(\square \)

We give conditions for a falling shadow to be a falling pseudo \(BCK \)-ideal.

Theorem 3.17. For a falling shadow \(\tilde{H} \) of a random set \(\xi \) on \(X \), assume that the following conditions are satisfied:

(a) \(\Omega = \Omega(0; \xi) \),

(b) \((\forall x, y \in X) (\Omega(x \rightarrow y; \xi) \cap \Omega(y; \xi) \cap \Omega(x \rightsquigarrow y; \xi) \subseteq \Omega(x; \xi)) \).

Then \(\tilde{H} \) is a falling pseudo \(BCK \)-ideal of \(X \).
Proof. Using (a), we have $0 \in \xi(\omega)$ for all $\omega \in \Omega$. Let $x, y \in X$ and $\omega \in \Omega$ be such that $x \rightarrow y \in \xi(\omega)$, $y \in \xi(\omega)$ and $x \sim y \in \xi(\omega)$. Then

$$\omega \in \Omega(x \rightarrow y; \xi) \cap \Omega(y; \xi) \cap \Omega(x \sim y; \xi) \subseteq \Omega(x; \xi)$$

by (b), and so $x \in \xi(\omega)$. Therefore $\xi(\omega)$ is a pseudo BCK-ideal of X for all $\omega \in \Omega$ with $\xi(\omega) \neq \emptyset$. Hence \tilde{H} is a falling pseudo BCK-ideal of X.

Corollary 3.18. For a falling shadow \tilde{H} of a random set ξ on X, assume that two conditions (a) and (b) in Theorem 3.17 are satisfied. If X is a pseudo d^*-algebra, then \tilde{H} is a falling pseudo d-ideal of X.

Theorem 3.19. If \tilde{H} is a falling pseudo d-subalgebra of X, then

$$(\forall x, y \in X) \left(\min\{\tilde{H}(x \rightarrow y), \tilde{H}(x \sim y)\} \geq T_m(\tilde{H}(x), \tilde{H}(y)) \right) \tag{3.4}$$

where $T_m(s, t) = \max\{s + t - 1, 0\}$ for any $s, t \in [0, 1]$.

Proof. By Definition 3.1, $\xi(\omega)$ is a pseudo d-subalgebra of X for any $\omega \in \Omega$ with $\xi(\omega) \neq \emptyset$. Hence

$$\{\omega \in \Omega \mid x \in \xi(\omega)\} \cap \{\omega \in \Omega \mid y \in \xi(\omega)\} \subseteq \{\omega \in \Omega \mid x \rightarrow y \in \xi(\omega)\}$$

and

$$\{\omega \in \Omega \mid x \in \xi(\omega)\} \cap \{\omega \in \Omega \mid y \in \xi(\omega)\} \subseteq \{\omega \in \Omega \mid x \sim y \in \xi(\omega)\}$$

which imply that

$$\tilde{H}(x \rightarrow y) = P(\omega \mid x \rightarrow y \in \xi(\omega))$$

$$\geq P(\{\omega \mid x \in \xi(\omega)\} \cap \{\omega \mid y \in \xi(\omega)\})$$

$$\geq P(\omega \mid x \in \xi(\omega)) + P(\omega \mid y \in \xi(\omega))$$

$$-P(\omega \mid x \in \xi(\omega) \text{ or } y \in \xi(\omega))$$

$$\geq \tilde{H}(x) + \tilde{H}(y) - 1$$

and

$$\tilde{H}(x \sim y) = P(\omega \mid x \sim y \in \xi(\omega))$$

$$\geq P(\{\omega \mid x \in \xi(\omega)\} \cap \{\omega \mid y \in \xi(\omega)\})$$

$$\geq P(\omega \mid x \in \xi(\omega)) + P(\omega \mid y \in \xi(\omega))$$

$$-P(\omega \mid x \in \xi(\omega) \text{ or } y \in \xi(\omega))$$

$$\geq \tilde{H}(x) + \tilde{H}(y) - 1.$$

Hence

$$\tilde{H}(x \rightarrow y) \geq \max\{\tilde{H}(x) + \tilde{H}(y) - 1, 0\} = T_m(\tilde{H}(x), \tilde{H}(y))$$

and

$$\tilde{H}(x \sim y) \geq \max\{\tilde{H}(x) + \tilde{H}(y) - 1, 0\} = T_m(\tilde{H}(x), \tilde{H}(y)).$$

Therefore $\min\{\tilde{H}(x \rightarrow y), \tilde{H}(x \sim y)\} \geq T_m(\tilde{H}(x), \tilde{H}(y))$ for all $x, y \in X$. \qed
Falling pseudo d-ideals and d-subalgebras in pseudo d-algebras

References

Received: July, 2012