Some Properties Related to
the Generalized q-Genocchi Numbers
and Polynomials with Weak Weight α

J. Y. Kang

Department of Mathematics
Hannam University, Daejeon 306-791, Korea

C. S. Ryoo

Department of Mathematics
Hannam University, Daejeon 306-791, Korea
ryoocs@hnu.kr

Abstract

Recently many mathematicians are working on Genocchi numbers and Genocchi polynomials. We define a new generalized q-Genocchi numbers $G^{(\alpha)}_{n,\lambda,q}$ and polynomials $G^{(\alpha)}_{n,\lambda,q}(x)$ with weak weight α and give some interesting relations of their numbers and polynomials with weak weight α. Also, we construct generalized q-Genocchi zeta function and generalized Hurwitz q-Genocchi zeta function and find relations between generalized q-Genocchi numbers and polynomials with weak weight α and their zeta functions.

Mathematics Subject Classification: 11B68, 11S40, 11S80

Keywords: generalized q-Genocchi numbers and polynomials with weak weight α, generalized q-Genocchi zeta function

1 Introduction

Many mathematicians defined the generalized q-Genocchi numbers and polynomials by using p-adic invariant integrals on \mathbb{Z}_p(see [1-9]). Also they introduced generalized q-Genocchi zeta function which interpolate q-Genocchi polynomials, in [1,3,4,6,9]. In the paper, our aim is to construct the new generalized q-Genocchi numbers $G^{(\alpha)}_{n,\lambda,q}$ and polynomials $G^{(\alpha)}_{n,\lambda,q}(x)$ with weak weight α by
using \(q \)-volkenborn integration. Next we construct new generalized \(q \)-Genocchi zeta function and new generalized Hurwitz \(q \)-Genocchi function which interpolate the generalized \(q \)-Genocchi numbers and polynomials with weak weight \(\alpha \) at negative integer. Throughout this paper we use the following notations.

Let \(v_p \) of numbers, the complex number field, and the completion of the algebraic closure normally assumes this paper, we use the following notation:

Hence \(\lim_{q \to 1} [x]_q = x \) for all \(x \in \mathbb{Z}_p \). For \(g \in UD(\mathbb{Z}_p) \), Kim defined the \(q \)-deformed fermionic \(p \)-adic integral on \(\mathbb{Z}_p \)

\[
I_{−q}(g) = \int_{\mathbb{Z}_p} g(x) d\mu_{−q}(x) = \lim_{N \to \infty} \frac{1}{[p^{N}]_{−q}} \sum_{0 < a < dp} g(x)(−q)^{x}. \tag{1.2}
\]

Let \(g_1(x) \) be the translation with \(g_1(x) = g(x + 1) \). Then we have the following integral equation:

\[
q^n I_{−q}(g_n) + (−1)^{n−1} I_{−q}(g) = [2]_q \sum_{l=0}^{n−1} (−1)^{n−1−l} q^l. \tag{1.3}
\]

For \(g \in UD(\mathbb{Z}_p) \),

\[
\int_{\mathbb{Z}_p} g(x) d\mu_{−q}(x) = \int_{\mathbb{X}} g(x) d\mu_{−q}(x). \tag{1.4}
\]

We introduced generalized Genocchi number and polynomials. Let \(\chi \) be a primitive Dirichlet character of conductor \(f \in \mathbb{N} \). We assume that \(f \) is odd. Then the generalized Genocchi numbers associated with \(\chi \) are defined by

\[
F_{\chi}(t) = \frac{2t \sum_{i=0}^{f−1} \chi(i)(−1)^i e^{iit}}{e^{ft} + 1} = \sum_{n=0}^{\infty} G_{n,\chi} \frac{t^n}{n!}. \tag{1.5}
\]

The generalized Genocchi polynomials associated with \(\chi \) are also defined by

\[
F_{\chi}(t, x) = \frac{2t \sum_{i=0}^{f−1} \chi(i)(−1)^i e^{iit}}{e^{ft} + 1} e^{tx} = \sum_{n=0}^{\infty} G_{n,\chi}(x) \frac{t^n}{n!}. \tag{1.6}
\]
In the special case $x = 0$, $G_{n,\chi} = G_{n,\chi}(0)$ are called the n-th generalized Genocchi numbers attached to χ. These numbers and polynomials are interpolated by the q-Genocchi zeta function and Hurwitz q-Genocchi zeta function, respectively.

2 Generalized q-Genocchi numbers and polynomials with weak weight α

Our primary goal of this section is to define the generalized q-Genocchi numbers and polynomials with weak weight α. We also find generating functions of the generalized q-Genocchi numbers and polynomials with weak weight α. These polynomials will be used to prove the analytic continuation of the generalized Hurwitz q-Genocchi zeta function. First, we introduce the generalized q-Genocchi numbers with weak weight α.

Definition 2.1 For $q \in \mathbb{C}_p$ with $|1-q|_p < 1$, $\alpha \in \mathbb{Z}$,

$$G^{(\alpha)}_{n,\chi,q} = \int_X \chi(x)n[x]_{q}^{n-1}d\mu_{-q^\alpha}(x). \quad (2.1)$$

By using p-adic q-integral, we have

$$\int_X \chi(x)n[x]_{q}^{n-1}d\mu_{-q^\alpha}(x)
= [2]_q^n \sum_{i=0}^{f-1} (-1)^i q^{i\alpha} \chi(i) \left(\frac{1}{1-q} \right)^{n-1} \sum_{l=0}^{n-1} \left(\frac{n-1}{l} \right) (-1)^l q^l \frac{1}{1+q^{(\alpha+l)f}}. \quad (2.2)$$

By (2.1), we obtain

$$G^{(\alpha)}_{n,\chi,q} = [2]_q^n \sum_{i=0}^{f-1} (-1)^i q^{i\alpha} \chi(i) \left(\frac{1}{1-q} \right)^{n-1} \sum_{l=0}^{n-1} \left(\frac{n-1}{l} \right) (-1)^l q^l \frac{1}{1+q^{(\alpha+l)f}}. \quad (2.3)$$

In order to find the generating function of $G^{(\alpha)}_{n,\chi,q}$, we set

$$F^{(\alpha)}_{\chi,q}(t) = \sum_{n=0}^{\infty} G^{(\alpha)}_{n,\chi,q} \frac{t^n}{n!}. \quad (2.4)$$

By using (2.3), we have

$$G^{(\alpha)}_{n,\chi,q} = [2]_q^n \sum_{i=0}^{f-1} (-1)^i q^{i\alpha} \chi(i) \left(\frac{1}{1-q} \right)^{n-1} \sum_{l=0}^{n-1} \left(\frac{n-1}{l} \right) (-1)^l q^l \frac{1}{1+q^{(\alpha+l)f}}
= [2]_q^n \sum_{l=0}^{\infty} (-1)^l q^{\alpha l} \chi(l)[l]_q^{n-1}. \quad (2.5)$$
By using (2.4) and (2.5), we obtain that
\[
F_{\chi,q}^{(\alpha)}(t) = \sum_{n=0}^{\infty} \left[2\right]_{q^\alpha} t^n \sum_{l=0}^{\infty} (-1)^l q^\alpha (l)[l]_q^{n-1} \frac{t^n}{n!} = \left[2\right]_{q^\alpha} t \sum_{n=0}^{\infty} (-1)^l q^\alpha (l)e^{[l]_q t}.
\] (2.6)

Then generalized \(q\)-Genocchi numbers \(G_{n,\chi,q}^{(\alpha)}\) with weak weight \(\alpha\) are defined by means of the generating function
\[
F_{\chi,q}^{(\alpha)}(t) = \left[2\right]_{q^\alpha} t \sum_{n=0}^{\infty} (-1)^n q^\alpha n! = \sum_{n=0}^{\infty} G_{n,\chi,q}^{(\alpha)} \frac{t^n}{n!}.
\] (2.7)

Remark 2.2 In (2.7), we see that
\[
\lim_{q \to 1} F_{\chi,q}^{(\alpha)}(t) = 2t \sum_{n=0}^{\infty} (-1)^n \chi(n)e^{nt} = \frac{2t \sum_{i=0}^{f-1} \chi(i)(-1)^i e^{it}}{e^{it} + 1} = F_{\chi}(t).
\] (2.8)

By using (2.1), we obtain
\[
\sum_{n=0}^{\infty} G_{n,\chi,q}^{(\alpha)} \frac{t^n}{n!} = \sum_{n=0}^{\infty} \int_X \chi(x)n[x]_q^{n-1} d\mu_{-q^\alpha}(x) t^n
\] (2.9)

By (2.7) and (2.9), we have
\[
\int_X t\chi(x)e^{[x]_q t} d\mu_{-q^\alpha}(x) = \left[2\right]_{q^\alpha} t \sum_{n=0}^{\infty} (-1)^n q^\alpha n! \chi(n)e^{[n]_q t}.
\] (2.10)

Next, we introduce the generalized \(q\)-Genocchi polynomials with weak weight \(\alpha\).

Definition 2.3 For \(q \in \mathbb{C}_p\) with \(|1 - q|_p < 1\), \(\alpha \in \mathbb{Z}\),
\[
G_{n,\chi,q}^{(\alpha)}(x) = \int_X \chi(y)n[x + y]_q^{n-1} d\mu_{-q^\alpha}(y).
\] (2.11)

By using \(p\)-adic \(q\)-integral, we have
\[
\int_X \chi(y)n[x + y]_q^{n-1} d\mu_{-q^\alpha}(y)
\] (2.12)
By using (2.11) and (2.12), we get

\[
G_{n,\chi,q}^{(\alpha)}(x) = [2]q^{\alpha}n \sum_{i=0}^{f-1} (-1)^{i}q^{\alpha}(i) \left(\frac{1}{1-q} \right)^{n} \sum_{l=0}^{n-1} \binom{n-1}{l} (-1)^{l}q^{\alpha} \chi(i) \left(\frac{1}{1+q^{\alpha+l}} \right).
\]

(2.13)

In order to find the generating function of \(G_{n,\chi,q}^{(\alpha)}(x) \), we set

\[
F_{\chi,q}^{(\alpha)}(t, x) = \sum_{n=0}^{\infty} G_{n,\chi,q}^{(\alpha)}(x) \frac{t^{n}}{n!}.
\]

(2.14)

By using (2.13), we obtain

\[
G_{n,\chi,q}^{(\alpha)}(x) = [2]q^{\alpha} \sum_{l=0}^{\infty} (-1)^{l}q^{\alpha l} \chi(l)[x + l]_{q}^{n-1}.
\]

(2.15)

By using (2.14), we get

\[
F_{\chi,q}^{(\alpha)}(t, x) = \sum_{n=0}^{\infty} \left([2]q^{\alpha} \sum_{l=0}^{\infty} (-1)^{l}q^{\alpha l} \chi(l)[x + l]_{q}^{n-1} \right) \frac{t^{n}}{n!}
\]

\[
= [2]q^{\alpha} t \sum_{l=0}^{\infty} (-1)^{l}q^{\alpha l} \chi(l)e^{[x+l]_{q}t}.
\]

(2.16)

Hence, we are defined the generating function of \(G_{n,\chi,q}^{(\alpha)}(x) \)

\[
F_{\chi,q}^{(\alpha)}(t, x) = [2]q^{\alpha} t \sum_{n=0}^{\infty} (-1)^{n}q^{\alpha n} \chi(n)e^{[x+n]_{q}t} = \sum_{n=0}^{\infty} G_{n,\chi,q}^{(\alpha)}(x) \frac{t^{n}}{n!}.
\]

(2.17)

Remark 2.4 In (2.17), we observe that

\[
\lim_{q \to 1} F_{\chi,q}^{(\alpha)}(t, x) = 2t \sum_{n=0}^{\infty} (-1)^{n} \chi(n)e^{(x+n)t}
\]

\[
= \frac{2t \sum_{i=0}^{f-1} \chi(i)(-1)^{i}e^{it}}{e^{ft+1}e^{xt}} = F_{\chi}(t, x).
\]

(2.18)
3 Some relations related to $G_{n,\chi,q}^{(\alpha)}$ and $G_{n,\chi,q}^{(\alpha)}(x)$

In this section, we investigate some relations related to $G_{n,\chi,q}^{(\alpha)}$ and $G_{n,\chi,q}^{(\alpha)}(x)$.

Since $[x + y]_q = [x]_q + q^x[y]_q$, we have

$$G_{n+1,\chi,q}^{(\alpha)}(x) = (n + 1) \int_X \chi(y)[x + y]_q^n d\mu_{q^\alpha}(y) = q^{-x}([x]_q + q^x G_{\chi,q}^{(\alpha)})^{n+1}. \quad (3.1)$$

Also, we get

$$\sum_{n=0}^{\infty} G_{n,\chi,q}^{(\alpha)}(x) \frac{t^n}{n!} = \sum_{n=0}^{\infty} \left(\int_X \chi(y)n \sum_{l=0}^{n-1} \binom{n-1}{l} [x]_q^{n-1-l} q^x[y]_q^l d\mu_{q^\alpha}(y) \right) \frac{t^n}{n!} = \sum_{n=0}^{\infty} \left(n \sum_{l=0}^{n-1} \binom{n-1}{l} [x]_q^{n-1-l} q^x \frac{G_{n+1,\chi,q}^{(\alpha)}}{l+1} \right) \frac{t^n}{n!}. \quad (3.2)$$

By comparing coefficient $\frac{t^n}{n!}$ in (3.2), we have the following theorem.

Theorem 3.1 Let $n \in \mathbb{N}$. Then we have

$$G_{n,\chi,q}^{(\alpha)}(x) = \sum_{k=0}^{n} \binom{n}{k} [x]_q^{n-k} q^x(k-1) G_{k,\chi,q}^{(\alpha)}. \quad (3.3)$$

By using (2.1) and (2.11), we have the following theorem.

Theorem 3.2 Let $n \in \mathbb{N}$. We have

$$G_{n,\chi,q}^{(\alpha)} = \frac{[f]_q^{n-1}}{[f]_q - q^\alpha} \sum_{i=0}^{f-1} \chi(i)(-1)^i q^{i\alpha} G_{n,q^i,f}^{(\alpha)}(\frac{i}{f}),$$

$$G_{n,\chi,q}^{(\alpha)}(x) = \frac{[f]_q^{n-1}}{[f]_q - q^\alpha} \sum_{i=0}^{f-1} \chi(i)(-1)^i q^{i\alpha} G_{n,q^i,f}^{(\alpha)}(\frac{i+x}{f}).$$

By using (1.7), we easily see that

$$q^{m[nf]} G_{m,\chi,q}^{(\alpha)}(nf) + (-1)^{nf-1} G_{m,\chi,q}^{(\alpha)} = [2][q^\alpha m \sum_{l=0}^{nf-1} (-1)^{nf-1-l} q^l \chi(l)]_q^{m-1}. \quad (3.4)$$

Hence, we have the following theorem.
Theorem 3.3 Let \(m \in \mathbb{Z}^+ \). If \(n \equiv 0 \pmod{2} \), then
\[
q^{\alpha nf}G_{m,\chi,q}^{(a)}(nf) - G_{m,\chi,q}^{(a)} = [2]_{q^\alpha} m \sum_{l=0}^{nf-1} (-1)^{l+1} q^{al} \chi(l) [l]_q^{m-1},
\]
If \(n \equiv 1 \pmod{2} \), then
\[
q^{\alpha nf}G_{m,\chi,q}^{(a)}(nf) + G_{m,\chi,q}^{(a)} = [2]_{q^\alpha} m \sum_{l=0}^{nf-1} (-1)^{l} q^{al} \chi(l) [l]_q^{m-1}.
\]

4 The \(q \)-Genocchi zeta function

In the section, we assume that \(q \in \mathbb{C} \) with \(|q| < 1\). By using generalized \(q \)-Genocchi numbers and polynomials with weak weight \(\alpha \), generalized \(q \)-Genocchi zeta function and generalized Hurwitz \(q \)-Genocchi zeta function are defined. These functions interpolate the generalized \(q \)-Genocchi numbers with weak weight \(\alpha \) and the generalized \(q \)-Genocchi polynomials with weak weight \(\alpha \), respectively.

From (2.7), we note that
\[
\frac{d^{k+1}}{dt^{k+1}} E_{\chi,q}^{(\alpha)}(t) \bigg|_{t=0} = [2]_{q^\alpha} (k+1) \sum_{n=0}^{\infty} (-1)^n q^{an} \chi(n) [n]_q^k, (k \in \mathbb{N}). \tag{4.1}
\]

Definition 4.1 For \(s \in \mathbb{C} \), we define
\[
\zeta_{\chi,q}^{(\alpha)}(s) = [2]_{q^\alpha} \sum_{n=1}^{\infty} \frac{(-1)^n q^{an} \chi(n)}{[n]_q^s}. \tag{4.2}
\]
Note that \(\zeta_{\chi,q}^{(\alpha)}(s) \) is a meromorphic function on \(\mathbb{C} \).

Remark 4.2 Let \(s \in \mathbb{C} \). Then we have
\[
\lim_{q \to 1} \zeta_{\chi,q}^{(\alpha)}(s) = 2 \sum_{n=1}^{\infty} \frac{(-1)^n \chi(n)}{n^s}. \tag{4.3}
\]
Relation between \(\zeta_{\chi,q}^{(\alpha)}(s) \) and \(G_{k,\chi,q}^{(a)} \) is given by the following theorem.

Theorem 4.3 For \(k \in \mathbb{N} \), we have
\[
\zeta_{\chi,q}^{(\alpha)}(-k) = \frac{1}{k+1} G_{k+1,\chi,q}^{(a)}. \tag{4.4}
\]
Observe that $\zeta^{(\alpha)}_{\chi,q}(s)$ interpolates $G^{(\alpha)}_{k,\chi,q}$ at non-negative integers.

By using (2.17), we note that

$$\frac{d^{k+1}}{dt^{k+1}} F^{(\alpha)}_{\chi,q}(t, x) \bigg|_{t=0} = [2]_{q^n}(k + 1) \sum_{l=0}^{\infty} (-1)^l q^{\alpha l} \chi(l)[x + l]_q^s, (k \in \mathbb{N}).$$ \hspace{1cm} (4.5)

By (4.5), we are now ready to define the generalized Hurwitz q- Genocchi zeta functions.

Definition 4.4 Let $s \in \mathbb{C}$. Then we have

$$\zeta^{(\alpha)}_{\chi,q}(s, x) = [2]_{q^n} \sum_{l=0}^{\infty} (-1)^l q^{\alpha l} \chi(l) \frac{x + l}{{[x + l]_q}^s}. \hspace{1cm} (4.6)$$

Note that $\zeta^{(\alpha)}_{\chi,q}(s, x)$ is a meromorphic function on \mathbb{C}. Relation between $\zeta^{(\alpha)}_{\chi,q}(s, x)$ and $G^{(\alpha)}_{k,\chi,q}(x)$ is given by the following theorem.

Theorem 4.5 For $k \in \mathbb{N}$, we get

$$\zeta^{(\alpha)}_{\chi,q}(-k, x) = \frac{1}{k + 1} G^{(\alpha)}_{k+1,\chi,q}(x). \hspace{1cm} (4.7)$$

Observe that $\zeta^{(\alpha)}_{\chi,q}(-k, x)$ function interpolates $G^{(\alpha)}_{k+1,\chi,q}(x)$ at non-negative integers.

ACKNOWLEDGEMENTS. This paper has been supported by the 2012 Hannam University Research Fund. Correspondence should be addressed to C. S. RYOO, ryoocs@hnu.kr.

References

Received: June, 2012