Necessary and Sufficient Condition for Schur Convexity of the Two-Parameter Symmetric Homogeneous Means

Zhen-Hang Yang

System Division, Zhejiang Province Electric Power Test and Research Institute, Hangzhou
Zhejiang, China, 310014
yzhkm@163.com

Abstract. An necessary and sufficient condition for Schur convexity of the two-parameter symmetric homogeneous means is given, which improves Witkowski’s result. As an application, Schur convexity of the four-parameter homogeneous means is perfectly solved. This improves and generalizes the known results for the Schur convexity of Stolarsky means and Gini means.

Mathematics Subject Classification: 26D15, 26D99, 26B25

Keywords: Schur convexity, Stolarsky means, Gini means, Four-parameter homogeneous means, two-parameter symmetric homogeneous means

1. Introduction

To begin with, we recall the definition of Schur convex functions.

Let $\Omega \subset \mathbb{R}^n (n \geq 2)$ be a set with nonempty interior. Then $\phi : \Omega \to \mathbb{R}$ is called Schur convex on Ω if $\phi(x) \leq \phi(y)$ for each two n-tuples $x = (x_1, x_2, ..., x_n)$ and $y = (y_1, y_2, ..., y_n)$ of Ω, such that $x \prec y$ holds. The relationship of majorization $x \prec y$ means that

$$\sum_{i=1}^{k} x_{[i]} \leq \sum_{i=1}^{k} y_{[i]}, \quad \sum_{i=1}^{n} x_{[i]} = \sum_{i=1}^{n} y_{[i]},$$

where $1 \leq k \leq n - 1$, and $x_{[i]}$ denotes the i-th largest component of x. ϕ is called Schur concave if $-\phi$ is Schur convex.

The following well-known result was proved by Marshall and Olkin [5].

Theorem M-O. Let $\Omega \subset \mathbb{R}^2$ be a symmetric convex set with nonempty interior Ω and $\phi : \Omega \to \mathbb{R}$ be a continuous and symmetric function on Ω. If ϕ is differentiable on Ω, then ϕ is Schur convex (Schur concave) on Ω if and only
if
\[(y - x) \left(\frac{\partial \phi}{\partial y} - \frac{\partial \phi}{\partial x} \right) > (\leq) 0\]
for all \((x, y) \in \Omega\) with \(x \neq y\).

Suppose \(p, q \in \mathbb{R}\) and \(a, b \in \mathbb{R}_+ = (0, \infty)\). For \(a \neq b\) the Stolarsky means are defined as
\[
S_{p,q}(a, b) = \begin{cases}
\left(\frac{q a^p - b^p}{p a^q - b^q} \right)^{1/(p-q)} & \text{if } pq(p - q) \neq 0, \\
\left(\frac{1}{p} \frac{a^p - b^p}{p \ln a - \ln b} \right)^{1/p} & \text{if } p \neq 0, q = 0, \\
\left(\frac{1}{q} \frac{a^q - b^q}{q \ln a - \ln b} \right)^{1/q} & \text{if } q \neq 0, p = 0, \\
\exp \left(\frac{a^p \ln a - b^p \ln b}{a^p - b^p} - \frac{1}{p} \right) & \text{if } p = q \neq 0, \\
\sqrt{ab} & \text{if } p = q = 0,
\end{cases}
\]
and \(S_{p,q}(a, a) = a\) (see [11]). It follows from (1.2) that \(S_{1,0}(a, b) = L(a, b)\) –the logarithmic mean, \(S_{1,1}(a, b) = I(a, b)\) –the identric (exponential) mean, \(S_{2,1}(a, b) = A(a, b)\) –the arithmetic mean, \(S_{3/2,1/2}(a, b) = He(a, b)\) –Heronian mean, etc.

Another two-parameter family of means was introduced by C. Gini in [3]. That are defined as
\[
G_{p,q}(a, b) = \begin{cases}
\left(\frac{a^p + b^p}{a^q + b^q} \right)^{1/(p-q)} & \text{if } p \neq q, \\
\exp \left(\frac{a^p \ln a + b^p \ln b}{a^p + b^p} \right) & \text{if } p = q.
\end{cases}
\]

The Schur convexities of \(S_{p,q}(a, b)\) and \(G_{p,q}(a, b)\) with respect to \((a, b)\) were investigated by Qi [8], Shi [10], Li [4], Chu, Zhang [1] et al. Until now, they have been perfectly solved by Chu and Zhang [1], Wang and Zhang [12, 14], respectively. Recently, Chu and Xia were also proved the same result as Wang and Zhang’s [2].

The Schur convexity of \(S_{p,q}(a, b)\) with respect to \((p, q)\) was investigated by Qi [7], who first obtained the following result.

Theorem Q. For fixed \(a, b > 0\) with \(a \neq b\), the Stolarsky means \(S_{p,q}(a, b)\) are Schur concave on \([0, \infty) \times [0, \infty)\) and Schur convex on \((-\infty, 0) \times (-\infty, 0)\) with respect to \((p, q)\).

Sándor [9] researched the Schur convexity of the Gini mean values \(G_{p,q}(a, b)\) with respect to \((p, q)\) and obtained a similar result.

Theorem S. For fixed \(a, b > 0\) with \(a \neq b\), the Gini mean values \(G_{p,q}(a, b)\) are Schur concave on \([0, \infty) \times [0, \infty)\) and Schur convex on \((-\infty, 0) \times (-\infty, 0)\) with respect to \((p, q)\).
In 2005, the Stolarsky and Gini means were generalized to the following two-parameter homogeneous function by Yang [17].

Definition 1. Let \(f: \mathbb{R}^2_+ \rightarrow \mathbb{R}_+ \) is a homogeneous, continuous function and has first partial derivatives. Then the function \(\mathcal{H}_f: \mathbb{R}^2 \times \mathbb{R}^2_+ \rightarrow \mathbb{R}_+ \) is called a homogeneous function generated by \(f \) with parameters \(p \) and \(q \) if \(\mathcal{H}_f \) is defined by

\[
(1.4) \mathcal{H}_f(p, q; x, y) = \left(\frac{f(x^p, y^p)}{f(x^q, y^q)} \right)^{1/(p-q)} \text{ if } p \neq q,
\]

\[
(1.5) \mathcal{H}_f(p, p; x, y) = \exp \left(\frac{x^p f_x(x^p, y^p) \ln x + y^p f_y(x^p, y^p) \ln y}{f(x^p, y^p)} \right) \text{ if } p = q,
\]

where \(f_x(x, y) \) and \(f_y(x, y) \) denote partial derivative with respect to first and second variable of \(f(x, y) \), respectively.

\(\mathcal{H}_f(p, q; x, y) \) is also called two-parameter homogeneous function for short, and usually simply denotes by \(\mathcal{H}_f(p, q) \) or \(\mathcal{H}_f(x, y) \).

Remark 1. Witkowski [13] proved that if \(f(x, y) \) is a symmetric and 1-order homogeneous function, then for all \(p, q \) \(\mathcal{H}_f(p, q; x, y) \) is a mean of positive numbers \(x \) and \(y \) if and only if \(f(x, y) \) is increasing in both variables on \(\mathbb{R}_+ \). In fact, it is easy to see that the condition "\(f(x, y) \) is symmetry" can be removed. If \(\mathcal{H}_f(p, q; x, y) \) is a mean of positive numbers \(x \) and \(y \) then it is called two-parameter homogeneous mean generated by \(f \).

The two-parameter homogeneous function \(\mathcal{H}_f(p, q; x, y) \) generated by \(f \) is very important because it can generates many well-known means. For examples, substituting \(L(x, y), A(x, y), I(x, y), He(x, y) \) for \(f(x, y) \) in Definition 1, we can obtain the two-parameter logarithmic means \(\mathcal{H}_L(p, q; x, y) = S_{p,q}(x, y) \), two-parameter arithmetic means \(\mathcal{H}_A(p, q; x, y) = G_{p,q}(x, y) \), two-parameter identric means \(I_{p,q}(x, y) := \mathcal{H}_I(p, q; x, y) \), two-parameter Heronian means \(He_{p,q}(x, y) := \mathcal{H}_{He}(p, q; x, y) \).

In 2009, Witkowskt used Merkle’s results [6] to prove the following.

Theorem W. The following conditions are equivalent:

(a) For all \(p, q \geq 0 \) and all \(x, y > 0 \ln \mathcal{H}_f \) is convex (concave) in \(p \) and \(q \).
(b) For all \(p, q \geq 0 \) and all \(x, y > 0 \ln \mathcal{H}_f \) is Schur convex (Schur concave) in \(p \) and \(q \).
(c) \(\hat{f}'(t) \) is convex (concave) for \(t \geq 0 \), where \(\hat{f}(t) = \ln f(e^t, 1) \).
(d) For all \(p, q \leq 0 \) and all \(x, y > 0 \ln \mathcal{H}_f \) is convex (concave) in \(p \) and \(q \).
(e) For all \(p, q \leq 0 \) and all \(x, y > 0 \ln \mathcal{H}_f \) is Schur concave (Schur convex) in \(p \) and \(q \).
(f) \(\hat{f}'(t) \) is concave (convex) for \(t \geq 0 \), where \(\hat{f}(t) = \ln f(e^t, 1) \).

It is clear that Theorem W is a generalization of Theorem Q and S. However, the Schur convexity of \(\mathcal{H}_f(p, q; a, b) \) on other plane domain with respect to \((p, q) \) has not been discussed.
The purpose of this work is to improve Theorem W. Our main result is as follows.

Theorem 1. Suppose that \(f : \mathbb{R}_+ \times \mathbb{R}_+ \rightarrow \mathbb{R}_+ \) is a symmetric, homogenous and three-time differentiable function. If \(J = (x - y)(xI)_x < (>)0 \), where \(I = (\ln f)_{xy} \),

\[
(1.6) \quad J = (x - y)(xI)_x < (>)0, \text{ where } I = (\ln f)_{xy},
\]

then for fixed \(a, b > 0 \) with \(a \neq b \), \(\mathcal{H}_f(p, q; a, b) \) is Schur convex if and only if \(p + q > (>)0 \) and Schur concave if and only if \(p + q < (>)0 \) with respect to \((p, q) \).

2. **Proof of Main Result**

In order to prove our main result, we continue to adopt our notations and use straightforward differentiations.

The following function will play an important role in proof of main result:

\[
(2.1) \quad t \rightarrow T(t) := \ln f(a^t, b^t).
\]

Some properties of which read as follows:

Property 1 ([18, (1.15), (2.10), (2.11), (2.12)]). Let \(f(x, y) \) be a positive, symmetric, \(n \)-order homogenous and two-time differentiable function defined on \(\mathbb{R}^2_+ \). Then

\[
(2.2) \quad T(t) - T(-t) = 2nt \ln G,
\]

\[
(2.3) \quad T'(t) + T'(-t) = 2n \ln G = 2T''(0),
\]

\[
(2.4) \quad T''(-t) = T''(t),
\]

where \(G = \sqrt{ab} \).

Remark 2. By Property 1, we see that the function \(t \rightarrow T(t) = \ln f(a^t, b^t) \) is an even function.

Property 2 ([18, (1.12), (2.5), (2.8)]). Let \(f(x, y) \) be a positive, homogenous and two-time differentiable function defined on \(\mathbb{R}^2_+ \). Then

\[
(2.5) \quad T''(t) = -xyI \ln^2(b/a), \text{ where } I = (\ln f)_{xy},
\]

\[
(2.6) \quad T'''(t) = -Ct^{-3}J, \text{ where } J = (x - y)(xI)_x, C = \frac{xy \ln^3(x/y)}{x - y} > 0,
\]

where \(x = a^t, y = b^t \).

Remark 3. It follows from property 2 that

\[
(2.7) \quad \text{sgn}(I) = - \quad \text{sgn}(T''(t)),
\]

\[
(2.8) \quad \text{sgn}(J) = - \quad \text{sgn}(t) \text{sgn}(T'''(t)).
\]

The following property is also crucial in the proof of main result.
Property 3 ([18, (1.13)]). If $T'(t)$ is continuous on $[p, q]$ or $[q, p]$, then $\ln \mathcal{H}_f(p, q)$ can be expressed in integral form as

$$
(2.9) \quad \ln \mathcal{H}_f(p, q) = \begin{cases}
\frac{1}{p - q} \int_q^p T'(t) \, dt & \text{if } p \neq q, \\
T'(q) & \text{if } p = q
\end{cases} = \int_0^1 T'(tp + (1 - t)q) \, dt.
$$

We now prove our main result.

Proof of Theorem 1. Direct partial derivative calculation for (2.9) leads to

$$
(2.10) \quad \frac{\partial \ln \mathcal{H}_f}{\partial p} = \frac{1}{\mathcal{H}_f} \frac{\partial \mathcal{H}_f}{\partial p} = \int_0^1 tT''(t_1(t)) \, dt,
$$

$$
(2.11) \quad \frac{\partial \ln \mathcal{H}_f}{\partial q} = \frac{1}{\mathcal{H}_f} \frac{\partial \mathcal{H}_f}{\partial q} = \int_0^1 (1 - t)T''(t_1(t)) \, dt,
$$

where $t_1(t) = tp + (1 - t)q$. Subtracting (2.11) from (2.10) yields

$$
(2.12) \quad \frac{1}{\mathcal{H}_f} \left(\frac{\partial \mathcal{H}_f}{\partial p} - \frac{\partial \mathcal{H}_f}{\partial q} \right) = \int_0^1 (2t - 1)T''(t_1(t)) \, dt.
$$

The right hand side of (2.12) can be split into a sum of two integrals:

$$
\int_0^{1/2} (2t - 1)T''(t_1(t)) \, dt + \int_{1/2}^1 (2t - 1)T''(t_1(t)) \, dt.
$$

Substituting $t = 1 - v$ in first integral above yields

$$
\int_0^{1/2} (2t - 1)T''(t_1(t)) \, dt = - \int_{1/2}^1 (2v - 1)T''(t_2(v)) \, dv,
$$

where $t_2(t) = (1 - t)p + tq$. Thus (2.12) can be written as

$$
(2.13) \quad \frac{1}{\mathcal{H}_f} \left(\frac{\partial \mathcal{H}_f}{\partial p} - \frac{\partial \mathcal{H}_f}{\partial q} \right) = \int_{1/2}^1 (2t - 1) (T''(t_1(t)) - T''(t_2(t))) \, dt.
$$

By (2.4) and Mean Value Theorem, there is a ξ between $|t_1(t)|$ and $|t_2(t)|$ such that

$$
T''(t_1(t)) - T''(t_2(t)) = T''(|t_1(t)|) - T''(|t_2(t)|) = (|t_1(t)| - |t_2(t)|) T''(\xi).
$$

But

$$
|t_1(t)| - |t_2(t)| = \frac{|t_1(t)|^2 - |t_2(t)|^2}{|t_1(t)| + |t_2(t)|} = \frac{(2t - 1)(p - q)(p + q)}{|t_1(t)| + |t_2(t)|}.
$$

Hence,

$$
(2.14) \quad \frac{p - q}{\mathcal{H}_f} \left(\frac{\partial \mathcal{H}_f}{\partial p} - \frac{\partial \mathcal{H}_f}{\partial q} \right) = (p - q)^2 (p + q) \int_{1/2}^1 \frac{(2t - 1)^2}{|t_1(t)| + |t_2(t)|} T''(\xi) \, dt.
$$
(2.8) shows that $\mathcal{J} < (>) 0$ is equivalent to that $T'''(t) > (>) 0$ for $t \in (0, \infty)$, and so

\[
\int_{1/2}^{1} \frac{(2t - 1)^2}{|t_1(t)| + |t_2(t)|} T'''(\xi) \, dt > (>) 0 \text{ for } p \neq \pm q.
\]

From (2.14) together with (2.15) and $\mathcal{H}_f > 0$ it follows that

\[
(p - q) \left(\frac{\partial \mathcal{H}_f}{\partial p} - \frac{\partial \mathcal{H}_f}{\partial q} \right) \left\{ \begin{array}{ll}
> 0 & \text{iff } p + q > (>) 0, \\
< 0 & \text{iff } p + q < (>) 0.
\end{array} \right.
\]

Using Theorem M-O, our required result follows. \hfill \Box

3. **An Application to the Four-parameter Homogeneous Means**

In 2005, Yang [16, 19] defined a four-parameter family generated by Stolarsky means, that is, $F(p,q;r,s;a,b) = \mathcal{H}_{F_t}(p,q;a,b)$, where $\mathcal{H}_L = \mathcal{H}_L(r,s;x,y)$, and investigated its monotonicity and log-convexity in parameters. Witkowski proved that $F(p,q;r,s;a,b)$ is a mean of positive numbers a and b for every $(p,q), (r,s) \in \mathbb{R}^2$ in [13, 6.4].

In the same way, Witkowski created a general four-parameter family $F_f(p,q;r,s;a,b):= \mathcal{H}_{F_f}(r,s;x,y)(p,q;a,b)$ and obtained some equivalent conditions for convexity with respect to parameter p and q in [13, Theorem 5.3]. But it is difficult to deal with a concrete member of the four-parameter family by using Witkowski’s results.

In this section, we will use our main result in this paper to study the Schur convexity of the four-parameter homogeneous means $F(p,q;r,s;a,b)$. We first recall the four-parameter means $F(p,q;r,s;a,b)$ as follows.

Definition 2 ([19]). Let $(p,q), (r,s) \in \mathbb{R}^2, (a,b) \in \mathbb{R}_+$. Then $F(p,q;r,s;a,b)$ are called four-parameter means if for $a \neq b$

\begin{align}
F(p,q;r,s;a,b) &= \left(\frac{L(a^{pr},b^{qr}) L(a^{qs},b^{qs})}{L(a^{ps},b^{ps}) L(a^{qs},b^{qs})} \right)^{\frac{1}{(p-q)(r-s)}} \text{ if } pqr s(p-q)(r-s) \neq 0, \\
\text{or} \\
F(p,q;r,s;a,b) &= \left(\frac{a^{ps} - b^{ps} a^{qs} - b^{qs}}{a^{ps} - b^{ps} a^{qs} - b^{qs}} \right)^{\frac{1}{(p-q)(r-s)}} \text{ if } pqr s(p-q)(r-s) \neq 0;
\end{align}

(3.1)
(3.2)
The four-parameter homogeneous means $\textbf{F}(p,q;r,s;a,b)$ contain many two-parameter means mentioned in [17], for example (see [18, Table 1]), $\textbf{F}(p,q;1,0;a,b)$ are exactly the Stolarsky means $S_{p,q}(a,b)$, $\textbf{F}(2,1;r,s;a,b)$ are just the Gini means $G_{p,q}(a,b)$, $\textbf{F}(1,1;r,s;a,b)$ are the two-parameter identric (exponential) means $\mathcal{H}_L(p,q;a,b)$, and $\textbf{F}(3/2,1/2;r,s;a,b)$ are the two-parameter Heronian means $\mathcal{H}_H(p,q;a,b)$, etc. It is thus clear that $\textbf{F}(p,q;r,s;a,b)$ is a class of more general means.

Concerning the Schur convexity of the four-parameter homogeneous means, we have the following

Theorem 2. For fixed $a, b > 0$ with $a \neq b$ and $(r,s) \in \mathbb{R}$, the four-parameter homogeneous means $\textbf{F}(p,q;r,s;a,b)$ are Schur convex if and only if $(p+q)(r+s) < 0$ and Schur concave if and only if $(p+q)(r+s) > 0$ with respect to (p,q).

Proof. Since $\textbf{F}(p,q;r,s;a,b) = \mathcal{H}_{\mathcal{H}_L}(p,q;a,b)$, where $\mathcal{H}_L = \mathcal{H}_L(r,s;x,y) = S_{r,s}(x,y)$ is symmetric, homogenous and three-time differentiable. To prove this theorem, it is enough to verify that

$$\mathcal{J} = (x - y)(x\mathcal{I})_x < (>)0,$$

where $\mathcal{I} = (\ln \mathcal{H}_L)_{xy}$.

In fact, we have shown $\mathcal{J} < (>)0$ if and only if $r + s < (>)0$ in [19, Proof of Theorem 2.3].

By Theorem 1, our desired result follows. \[\square\]

With $(r,s) = (1,0),(2,1),((1,1),(3/2,1/2)$, we obtain immediately

Corollary 1. For fixed $a, b > 0$ with $a \neq b$, $S_{p,q}(a,b)$, $G_{p,q}(a,b)$, $I_{p,q}(a,b)$ and $\mathcal{H}_{p,q}(a,b)$ are all Schur convex if and only if $p + q < 0$ and Schur concave if and only if $p + q > 0$ with respect to (p,q).

Remark 4. It is clear that Corollary 1 contains improvements for Qi’s and Sándor’s results.

References

Received: April, 2011