Weak Convergence Theorem for Finding Common Fixed Points of a Family of Firmly Nonexpansive Mappings and a Nonspraying Mapping in Hilbert Spaces

Somyot Plubtieng and Sukanya Chornphrom

Department of Mathematics, Faculty of Science
Naresuan University, Phitsanulok 65000, Thailand

Abstract

In this paper, we introduce an iterative method and prove a weak convergence theorem for finding common fixed points of a family of firmly nonexpansive mappings and a nonspraying mapping in Hilbert spaces. Moreover, we apply our result to finding common element of a solution set of generalized mixed equilibrium problem and a common fixed point set nonspraying mappings. Using the result, we improve and unify several results in fixed point problems and equilibrium problems.

Keywords: Equilibrium problem, Fixed point problem, Firmly nonexpansive mapping, Nonspraying mapping

1 Introduction

Let H be a real Hilbert space and let C be a nonempty closed convex subset of H. Then a mapping $T : C \rightarrow C$ is said to be nonexpansive if $\|Tx - Ty\| \leq \|x - y\|$ for all $x, y \in C$. We denote by $F(T)$ the set of fixed points of T. A mapping F is said to be firmly nonexpansive if

$$\|Fx - Fy\|^2 \leq \langle x - y, Fx - Fy \rangle,$$

for all $x, y \in C$; see, for instance, [2, 4, 5, 13, 14]. On the other hand, a mapping $Q : C \rightarrow C$ is said to be quasi-nonexpansive if $F(Q) \neq \emptyset$ and

$$\|Qx - y\| \leq \|x - y\|,$$

1Somyotp@nu.ac.th
for all $x \in C$ and $y \in F(Q)$, where $F(Q)$ is the set of fixed points of Q. If $T : C \rightarrow C$ is nonexpansive and the set $F(T)$ of fixed points of T is nonempty, then T is quasi-nonexpansive.

Recently, Kohsaka and Takahashi [8] introduced the following nonlinear mapping: Let E be a a Hilbert space and let C be a nonempty closed convex subset of E. Then, a mapping $S : C \rightarrow C$ is said to be nonspraying if

$$2\|Sx - Sy\|^2 \leq \|Sx - y\|^2 + \|x - Sy\|^2,$$

for all $x, y \in C$. We know in a Hilbert space that every firmly nonexpansive mapping is nonspraying and that if the set of fixed points of a nonspraying mapping is nonempty, the nonspraying mapping is quasi-nonexpansive; see [8]. Let $A : C \rightarrow H$ be a mapping of C into H is called monotone if

$$\langle Au - Av, u - v \rangle \geq 0 \ \forall u, v \in C.$$

A mapping $A : C \rightarrow H$ is called λ-inverse-strongly monotone if there exists a positive real number λ such that

$$\langle Au - Av, u - v \rangle \geq \lambda \|Ax - Ay\|^2 \ \forall u, v \in C.$$

Let $F : C \times C \rightarrow \mathbb{R}$ be a bifunction. The equilibrium problem for F is to determine its equilibrium points, i.e. the set

$$EP(F) = \{x \in C : F(x, y) \geq 0, \ \forall y \in C\}.$$

Many problems in physics, optimization, and economics require some elements of $EP(F)$, see [2, 3, 9, 15, 16, 17]. Several iterative methods have been proposed to solve the equilibrium problem, see for instance [3, 15, 16, 17]. In 2005, Combettes and Hirstoaga [3] introduced an iterative scheme for finding the best approximation to the initial data when $EP(F)$ is nonempty and proved a strong convergence theorem.

The variational inequality problem is to find $u \in C$ such that

$$\langle Au, v - u \rangle \geq 0$$

for all $v \in C$. The set of solutions of the variational inequality is denoted by $VI(C, A)$. The generalized equilibrium problem for F and A is to find $x \in C$ such that

$$F(x, y) + \langle Ax, y - x \rangle \geq 0 \ \text{for all} \ y \in C. \quad (1.1)$$

Problem (1.1) was introduce by Takahashi and Takahashi [16] and the set of solution of (1.1) is denoted by $GEP(F, A)$. The generalized mixed equilibrium problem for F, ψ and A is to find $x \in C$ such that

$$F(x, y) + \psi(y) - \psi(x) + \langle Ax, y - x \rangle \geq 0 \ \text{for all} \ y \in C. \quad (1.2)$$
The set of solution of (1.2) is denoted by $GMEP(F, \varphi, A)$.

On the other hand, Halpern [6] introduced the following iterative scheme for approximating a fixed point of T:

$$x_{n+1} = \alpha_n x + (1 - \alpha_n)Tx_n$$

(1.3)

for all $n \in \mathbb{N}$, where $x_1 = x \in C$ and $\{\alpha_n\}$ is a sequence of $[0, 1]$. Recently, Aoyama et al. [1] introduced a Halpern type iterative sequence for finding a common fixed point of a countable family of nonexpansive mappings. Let $x_1 = x \in C$ and

$$x_{n+1} = \alpha_n x + (1 - \alpha_n)T_n x_n$$

(1.4)

for all $n \in \mathbb{N}$, where C is a nonempty closed convex subset of a Banach space, $\{\alpha_n\}$ is a sequence in $[0, 1]$ and $\{T_n\}$ is a sequence of nonexpansive mappings of C into itself which satisfies the AKTT-condition, that is,

$$\sum_{n=1}^{\infty} \sup \{\|T_{n+1}z - T_nz\| : z \in C\} < \infty.$$

(1.5)

They proved that the sequence $\{x_n\}$ defined by (1.4) converges strongly to a common fixed point of $\{T_n\}$.

In this paper, motivated by Plubtieng and Thammathiwat [12], Iemoto and Takahashi [7], we introduce a new iterative sequence and prove a weak convergence theorem for finding common fixed points of a families of nonexpansive mappings and a nonspreading mapping in Hilbert spaces. Moreover, we apply our result to finding common element of a solution set of generalized mixed equilibrium problem and a common fixed point set nonspreading mappings.

2 Preliminaries

This section collects some lemmas which will be used in the proofs for the main results in the next section. Let H be a real Hilbert space with inner product $\langle \cdot, \cdot \rangle$ and norm $\|\cdot\|$. In a Hilbert space, it is known that

$$\|\alpha x + (1 - \alpha)y\|^2 = \alpha\|x\|^2 + (1 - \alpha)\|y\|^2 - \alpha(1 - \alpha)\|x - y\|^2.$$

By definition of the metric projection P_C we known that P_C is a nonexpansive mapping of H onto C and satisfies

$$\|P_Cx - P_Cy\|^2 \leq \langle P_Cx - P_Cy, x - y \rangle, \ \forall x, y \in H.$$

Further, for any $x \in H$ and $y \in C$, $y = P_Cx$ if and only if $\langle x - y, y - z \rangle \geq 0$, $\forall z \in C$.

A space X is said to satisfy Opial's condition [10] if for each sequence \(\{x_n\}_{n=1}^{\infty} \) in X which converges weakly to point $x \in X$, we have
\[
\liminf_{n \to \infty} \|x_n - x\| < \liminf_{n \to \infty} \|x_n - y\|, \ \forall y \in X, \ y \neq x
\]
and
\[
\limsup_{n \to \infty} \|x_n - x\| < \limsup_{n \to \infty} \|x_n - y\|, \ \forall y \in X, \ y \neq x.
\]

Lemma 2.1. [8] Let H be a Hilbert space, C a nonempty closed convex subset of H. Let S be a nonspreading mapping of C into itself. Then $F(S)$ is closed and convex.

In order to prove the main result, we shall use the following lemmas in the sequel.

Lemma 2.2. [7] Let H be a Hilbert space, C a closed convex subset of H, and $S : C \to C$ a nonspreading mapping with $F(S) \neq \emptyset$. Then S is demiclosed, i.e., $x_n \rightharpoonup u$ and $x_n - Sx_n \to 0$ imply $u \in F(S)$.

Lemma 2.3. [7] Let H be a Hilbert space, C a nonempty closed convex subset of a real Hilbert space H and let S be a nonspreading mapping of C into itself and let $A = I - S$. Then
\[
\|Ax - Ay\|^2 \leq \langle x - y, Ax - Ay \rangle + \frac{1}{2}(\|Ax\|^2 + \|Ay\|^2).
\]

Lemma 2.4. [11] Let C be a nonempty bounded closed convex subset of Hilbert space E and $\{T_n\}$ a sequence of mappings of C into itself. Suppose that
\[
\lim_{k,l \to \infty} \rho_k^l = 0
\]
where $\rho_k^l = \sup\{\|T_kz - T_lz\| : z \in C\} < \infty$, for all $k, l \in \mathbb{N}$. Then for each $x \in C$, $\{T_nx\}$ converges strongly to some point of C. Moreover, let T be a mapping from C in to itself defined by
\[
Tx = \lim_{n \to \infty} T_nx, \ \text{for all } x \in C.
\]
Then $\lim_{n \to \infty} \sup\{\|Tz - T_nz\| : z \in C\} = 0$.

In fact, Aoyama et al. [1] proved Lemma 2.4 in case the sequence $\{T_n\}$ satisfies the AKTT-condition. We note that if a sequence $\{T_n\}$ satisfies the AKTT-condition then $\{T_n\}$ satisfies the condition (2.1).
3 Weak convergence theorem

In this section, we prove a weak convergence theorem for finding common fixed points of a family of nonexpansive mappings and a nonspreading mapping in Hilbert space.

Theorem 3.1. Let H be a real Hilbert space and let C be a nonempty closed convex subset of H. Let S be a nonspreading mapping of C into itself and let $\{T_n\}$ be the sequences of firmly nonexpansive mappings of C into itself such that $F(S) \cap (\cap_{n=1}^{\infty} F(T_n))$ is nonempty. Let $\{\alpha_n\} \subset [a, b]$ for some $a, b \in (0, 1)$. Let $\{x_n\}$ be a sequence defined by $x_0 = x \in C$ and

$$x_{n+1} = \alpha_n x_n + (1 - \alpha_n) ST_n x_n, \quad n \geq 0. \quad (3.1)$$

Suppose that $\{T_n\}$ satisfy the AKTT-condition and T be the mappings of C into itself defined by $Ty = \lim_{n \to \infty} T_n y$ for all $y \in C$ and suppose that $F(T) = \cap_{n=1}^{\infty} F(T_n)$. Then $\{x_n\}$ converges weakly to $\hat{x} \in F(S) \cap (\cap_{n=1}^{\infty} F(T_n))$.

Proof. Take a point $v \in F(S) \cap (\cap_{n=1}^{\infty} F(T_n))$ and put $y_n = T_n x_n$. We shall show that the sequences $\{x_n\}$ is bounded. First, we note that

$$\|Sy_n - v\| \leq \|y_n - v\| = \|T_n x_n - v\| \leq \|x_n - v\|,$$

we obtain,

$$\|x_{n+1} - v\|^2 = \|\alpha_n x_n + (1 - \alpha_n) Sy_n - v\|^2$$

$$= \|\alpha_n (x_n - v) + (1 - \alpha_n) (Sy_n - v)\|^2$$

$$= \alpha_n \|x_n - v\|^2 + (1 - \alpha_n) \|Sy_n - v\|^2 - \alpha_n (1 - \alpha_n) \|Sy_n - x_n\|^2$$

$$\leq \alpha_n \|x_n - v\|^2 + (1 - \alpha_n) \|y_n - v\|^2 - \alpha_n (1 - \alpha_n) \|Sy_n - x_n\|^2$$

$$\leq \alpha_n \|x_n - v\|^2 + (1 - \alpha_n) \|x_n - v\|^2 - \alpha_n (1 - \alpha_n) \|Sy_n - x_n\|^2$$

$$= \|x_n - v\|^2 - \alpha_n (1 - \alpha_n) \|Sy_n - x_n\|^2$$

$$\leq \|x_n - v\|^2.$$

Hence $\{\|x_{n+1} - v\|\}$ is a decreasing sequence and therefore $\lim_{n \to \infty} \|x_n - v\|$ exists. This implies that $\{x_n\}, \{y_n\}$ and $\{Sy_n\}$ are bounded. Since $\{T_n\}$ is firmly nonexpansive, it follows that

$$\|T_n x_n - v\|^2 = \|T_n x_n - T_n v\|^2$$

$$\leq \langle T_n x_n - v, x_n - v \rangle$$

$$= \frac{1}{2} (\|T_n x_n - v\|^2 + \|x_n - v\|^2 - \|x_n - T_n x_n\|^2),$$
for all \(v \in F(S) \cap (\cap_{n=1}^{\infty} F(T_n)) \) and hence
\[
\|T_nx_n - v\|^2 \leq \|x_n - v\|^2 - \|x_n - T_nx_n\|^2.
\]
Thus, we have
\[
\|x_{n+1} - v\|^2 = \|x_n + (1 - \alpha_n)Sy_n - v\|^2 \\
= \|\alpha_n(x_n - v) + (1 - \alpha_n)(Sy_n - v)\|^2 \\
\leq \alpha_n\|x_n - v\|^2 + (1 - \alpha_n)\|Sy_n - v\|^2 \\
\leq \alpha_n\|x_n - v\|^2 + (1 - \alpha_n)\|v - y_n\|^2 \\
= \alpha_n\|x_n - v\|^2 + (1 - \alpha_n)\|T_nx_n - v\|^2 \\
\leq \alpha_n\|x_n - v\|^2 + (1 - \alpha_n)\left(\|x_n - v\|^2 - \|x_n - T_nx_n\|^2\right).
\]
we obtain
\[
(1 - \alpha_n)\|x_n - T_nx_n\|^2 \leq \alpha_n\|x_n - v\|^2 + (1 - \alpha_n)\|x_n - v\|^2 - \|x_{n+1} - v\|^2 \\
= \|x_n - v\|^2 - \|x_{n+1} - v\|^2.
\]
Since, \(0 < a \leq \alpha_n \leq b < 1 \) and \(\lim_{n \to \infty} \|x_n - v\|^2 = \lim_{n \to \infty} \|x_{n+1} - v\|^2 \), we obtain
\[
\|x_n - T_nx_n\| = \|x_n - y_n\| \to 0.
\]
Put \(A_n = I - ST_n \). From \(A_nv = 0 \), it follows by Lemma 2.3 that
\[
\|x_{n+1} - v\|^2 = \|\alpha_nx_n + (1 - \alpha_n)ST_nx_n - v\|^2 \\
= \|\alpha_nx_n + (1 - \alpha_n)x_n - (1 - \alpha_n)x_n + (1 - \alpha_n)ST_nx_n - v\|^2 \\
= \|x_n - v - (1 - \alpha_n)(x_n - ST_nx_n)\|^2 \\
= \|x_n - v\|^2 - 2(1 - \alpha_n)x_n - v, A_nx_n) + (1 - \alpha_n)^2\|A_nx_n\|^2 \\
= \|x_n - v\|^2 - 2(1 - \alpha_n)x_n - v, A_nx_n - A_nv) + (1 - \alpha_n)^2\|A_nx_n\|^2 \\
\leq \|x_n - v\|^2 - 2(1 - \alpha_n)x_n - v, A_nx_n - A_nv) + (1 - \alpha_n)^2\|A_nx_n\|^2 \\
+ (1 - \alpha_n)^2\|A_nx_n\|^2 \\
= \|x_n - v\|^2 - (1 - \alpha_n)\|A_nx_n\|^2 + (1 - \alpha_n)^2\|A_nx_n\|^2 \\
= \|x_n - v\|^2 - \alpha_n(1 - \alpha_n)\|A_nx_n\|^2
\]
and hence
\[
\alpha_n(1 - \alpha_n)\|A_nx_n\|^2 \leq \|x_n - v\|^2 - \|x_{n+1} - v\|^2.
\]
Since \(\lim \inf_{n \to \infty} \alpha_n(1 - \alpha_n) > 0 \), we get
\[
\lim_{n \to \infty} \|A_nx_n\| = \lim_{n \to \infty} \|x_n - ST_nx_n\| = 0.
\]
So, we have
\[
\|y_n - S y_n\| = |T_n x_n - S T_n x_n| = |T_n x_n - x_n + x_n - S T_n x_n| \\
\leq \|T_n x_n - x_n\| + \|x_n - S T_n x_n\| \to 0 \text{ as } n \to \infty.
\]

Since \(\{y_n\}\) is bounded, there exists a subsequence \(\{y_{n_i}\}\) of \(\{y_n\}\) which converges weakly to \(\hat{z}\). Without loss of generality, we can assume that \(y_{n_i} \rightharpoonup \hat{z}\). By Lemma 2.2, we have \(\hat{z} \in F(S)\). From \(\lim_{n \to \infty} \|x_n - y_n\| \to 0\) and \(y_{n_i} \rightharpoonup \hat{z}\), we get \(x_{n_i} \rightharpoonup \hat{z}\). We shall show that \(\hat{z} \in F(T)\). From \(\|T_n x_n - x_n\| \to 0\) and AKTT-condition, we have \(\|T x_n - x_n\| \leq \|T x_n - T_n x_n\| + \|T_n x_n - x_n\| \to 0\).

We next show that \(\hat{z} \in F(T)\). Assume \(\hat{z} \notin F(T)\). Since \(x_{n_i} \rightharpoonup \hat{z}\) and \(\hat{z} \neq T \hat{z}\). By the Opial’s condition, we have
\[
\liminf_{n \to \infty} \|x_{n_i} - \hat{z}\| < \liminf_{n \to \infty} \|x_{n_i} - T \hat{z}\| \\
\leq \liminf_{n \to \infty} \{\|x_{n_i} - T x_{n_i}\| + \|T x_{n_i} - T \hat{z}\|\} \\
\leq \liminf_{n \to \infty} \|x_{n_i} - \hat{z}\|.
\]

This is a contradiction. So, we get \(\hat{z} \in F(T)\). Hence \(\hat{z} \in F(S) \cap (\cap_{n=1}^{\infty} F(T_n))\).

Let \(\{x_{n_k}\}\) be another subsequence of \(\{x_n\}\) such that \(\{x_{n_k}\}\) converges weakly to \(\hat{z}\). We may show that \(\hat{z} = \tilde{z}\), suppose not. Since \(\lim_{n \to \infty} \|x_n - v\|\) exists for all \(v \in F(S) \cap (\cap_{n=1}^{\infty} F(T_n))\), it follows by the Opial’s condition that
\[
\lim_{n \to \infty} \|x_n - \hat{z}\| = \liminf_{i \to \infty} \|x_{n_i} - \tilde{z}\| < \liminf_{i \to \infty} \|x_{n_i} - \tilde{z}\| = \lim_{n \to \infty} \|x_n - \tilde{z}\| \\
= \liminf_{k \to \infty} \|x_{n_k} - \hat{z}\| < \liminf_{k \to \infty} \|x_{n_k} - \hat{z}\| = \lim_{n \to \infty} \|x_n - \hat{z}\|.
\]

This is a contradiction. Thus, we have \(\hat{z} = \tilde{z}\). This implies that \(\{x_n\}\) converges weakly to \(\hat{z} \in F(S) \cap (\cap_{n=1}^{\infty} F(T_n))\). This completes the proof. \(\square\)

4 Applications

In this section, using Theorem 3.1, we prove weak convergence theorem for finding a common element of the set of solutions of generalized mixed equilibrium problem and the fixed point set of a nonspreading mapping in Hilbert space. Before, proving our theorems, we need the following lemmas. For solving the equilibrium problem for a bifunction \(F : C \times C \to \mathbb{R}\), let us assume that \(F\) satisfies following conditions:

(A1) \(F(x, x) = 0\) for all \(x \in C\).

(A2) \(F\) is monotone, that is, \(F(x, y) + F(y, x) \leq 0\) for all \(x, y \in C\).
(A3) for each \(x, y, z \in C \). \(\lim_{t \downarrow 0} F(tz + (1-t)x, y) \leq F(x, y) \).

(A4) for each \(x \in C, y \mapsto F(x, y) \) is convex and lower semicontinuous.

The following lemma appears implicitly in [2].

Lemma 4.1. [2] Let \(C \) be a nonempty closed convex subset of \(H \) and let \(F \) be a bifunction of \(C \times C \) into \(\mathbb{R} \) satisfying (A1)-(A4). Let \(r > 0 \) and \(x \in H \). Then, there exists \(z \in C \) such that

\[
F(z, y) + \frac{1}{r} \langle y - z, z - x \rangle \geq 0 \quad \text{for all} \quad y \in C.
\]

The following lemma was also given in [3].

Lemma 4.2. [3] Assume that \(F : C \times C \rightarrow \mathbb{R} \) satisfies (A1)-(A4). For \(r > 0 \) and \(x \in H \), define a mapping \(T_r : H \rightarrow C \) as follows:

\[
T_r(x) = \{ z \in C : F(z, y) + \frac{1}{r} \langle y - z, z - x \rangle \geq 0, \forall y \in C \}
\]

for all \(z \in H \). Then, the following hold:

1. \(T_r \) is single-valued;
2. \(T_r \) is firmly nonexpansive, i.e., for any \(x, y \in H \), \(\|T_r x - T_r y\|^2 \leq \langle T_r x - T_r y, x - y \rangle \);
3. \(F(T_r) = EP(F) \);
4. \(EP(F) \) is closed and convex.

Lemma 4.3. Let \(C \) be a nonempty closed convex subset of a real Hilbert space \(H \). Let \(A : C \rightarrow H \) be a continuous monotone mapping, \(\psi : C \rightarrow \mathbb{R} \) a lower semi-continuous and convex function and \(F : C \times C \rightarrow \mathbb{R} \) be a bifunction satisfying (A1)-(A4). Let \(r > 0 \) and \(x \in H \). Then

\(I \) there exists \(z \in C \) such that

\[
F(z, y) + \langle Az, y - z \rangle + \psi(y) - \psi(z) + \frac{1}{r} \langle y - z, z - x \rangle \geq 0, \forall y \in C. \quad (4.1)
\]

\(II \) If we define a mapping \(K_r : C \rightarrow C \) as follows:

\[
K_r(x) = \{ z \in C : F(z, y) + \langle Az, y - z \rangle + \psi(y) - \psi(z) + \frac{1}{r} \langle y - z, z - x \rangle \geq 0, \forall y \in C \}
\]

for all \(z \in H \). Then, the following hold:
(1) K_r is single-valued;

(2) K_r is firmly nonexpansive, i.e., for any $x, y \in H$,
 $\|K_rx - K_ry\|^2 \leq \langle K_rx - K_ry, x - y \rangle$;

(3) $F(K_r) = GMEP(F, A, \psi)$;

(4) $GMEP(F, A, \psi)$ is closed and convex.

Proof. Define a bifunction $\Theta : C \times C \rightarrow \mathbb{R}$ as follows:

$$\Theta(x, y) = F(x, y) + \langle Ax, y - x \rangle + \psi(y) - \psi(x), \forall x, y \in C.$$

Next we prove that F satisfies the conditions (A1) - (A4).

(i) In fact, since
 $$\Theta(x, x) = F(x, x) + \langle Ax, x - x \rangle + \psi(x) - \psi(x) = 0, \forall x \in C,$$
the condition (A1) is satisfied.

(ii) Since F satisfies the condition (A2), ψ is lower semi-continuous and convex function and $A : C \rightarrow H$ is a continuous monotone mapping, for any $x, y \in C$, we have

$$\Theta(x, y) + \Theta(y, x) = F(x, y) + F(y, x) + \langle Ax, y - x \rangle + \langle Ay, x - y \rangle + \psi(y) - \psi(x) + \psi(y) - \psi(x) \leq 0.$$

The condition (A2) is proved.

(iii) Since A is continuous and monotone, ψ is convex and lower semi-continuous and F satisfies the condition (A3), we have

$$\limsup_{t \downarrow 0} \Theta(x + t(u - x), y) = \limsup_{t \downarrow 0} \left\{ F(x + t(u - x), y) + \langle A(x + t(u - x)), y - (x + t(u - x)) \rangle + \psi(y) - \psi(x + t(u - x)) \right\} \leq F(x, y) + \limsup_{t \downarrow 0} \left\{ \langle A(x + t(u - x)), y - (x + t(u - x)) \rangle \right\} + \psi(y) - \liminf_{t \downarrow 0} \psi(x + t(u - x)) \leq F(x, y) + \limsup_{t \downarrow 0} \left\{ \langle A(x + t(u - x)), y - (x + t(u - x)) \rangle \right\} + \psi(y) - \psi(x) = \Theta(x, y).$$

The condition (A3) is proved.

(iv) By the assumption that the function $y \mapsto F(x, y)$ and ψ both are convex and lower semi-continuous. Again since the function $y \mapsto \langle Ax, y - x \rangle$
is convex and continuous, thus the function \(y \mapsto \Theta(x, y) \) is convex and lower semi-continuous, i.e., \(\Theta \) satisfies the condition (A4).

Hence the conclusions (I) and (II) of Lemma 4.3 can be obtained from Lemma 4.2 immediately.

Theorem 4.4. Let \(C \) be a nonempty closed convex subset of a real Hilbert space \(H \). Let \(A : C \rightarrow H \) be a continuous monotone mapping, \(\psi : C \rightarrow \mathbb{R} \) a lower semi-continuous and convex function and \(F : C \times C \rightarrow \mathbb{R} \) be a bifunction satisfies (A1)-(A4). Let \(S \) be a nonspreading mapping of \(C \) into itself such that \(F(S) \cap \text{GMEP}(F, A, \psi) \neq \emptyset \). Suppose \(x_0 = x \in C \) and define the sequence \(\{x_n\} \) and \(\{y_n\} \) by

\[
\begin{align*}
F(y_n, y) + \langle Ay_n, y - y_n \rangle + \psi(y) - \psi(y_n) + \frac{1}{r_n} \langle y - y_n, y_n - x_n \rangle & \geq 0, \quad \forall y \in C, \\
x_{n+1} = \alpha_n x_n + (1 - \alpha_n) Sy_n,
\end{align*}
\]

for all \(n \in \mathbb{N} \), where \(\{r_n\} \in (0, \infty) \) with \(\sum_{n=1}^{\infty} |r_{n+1} - r_n| < \infty \) and \(\{\alpha_n\} \subseteq [a, b] \) for some \(a, b \in (0, 1) \). Then \(\{x_n\} \) converges weakly to \(\hat{z} \in F(S) \cap \text{GMEP}(F, A, \psi) \).

Proof. Setting \(T_n \equiv T_{r_n} \) in Theorem 3.1 then we have \(y_n = T_{r_n} x_n \). Let \(v \in F(S) \cap \text{GMEP}(F, A, \psi) \). For \(n \in \mathbb{N} \), let \(z_n = T_{r_n} z \). We first prove that

\[
\sum_{n=1}^{\infty} \sup \left\{ \|T_{r_{n+1}} z - T_{r_n} z\| : z \in C \right\} < \infty \quad (4.3)
\]

We note that

\[
F(z_n, y) + \langle Az_n, y - z_n \rangle + \psi(y) - \psi(z_n) + \frac{1}{r_n} \langle y - z_n, z_n - z \rangle \geq 0 \quad (4.4)
\]

for all \(y \in C \) and

\[
F(z_{n+1}, y) + \langle Az_{n+1}, y - z_{n+1} \rangle + \psi(z_{n+1}) - \psi(z_n) + \frac{1}{r_{n+1}} \langle y - z_{n+1}, z_{n+1} - z \rangle \geq 0 \quad (4.5)
\]

for all \(y \in C \). Setting \(y = z_{n+1} \) in (4.4) and \(y = z_n \) in (4.5), we have

\[
F(z_n, z_{n+1}) + \langle Az_n, z_{n+1} - z_n \rangle + \psi(z_{n+1}) - \psi(z_n) + \frac{1}{r_n} \langle z_{n+1} - z_n, z_n - z \rangle \geq 0
\]

and

\[
F(z_{n+1}, z_n) + \langle Az_{n+1}, z_n - z_{n+1} \rangle + \psi(z_n) - \psi(z_{n+1}) + \frac{1}{r_{n+1}} \langle z_n - z_{n+1}, z_{n+1} - z \rangle \geq 0.
\]
Adding the two inequalities and by (A2), we have
\[
\langle Az_n - Az_{n+1}, z_{n+1} - z_n \rangle + \left\langle z_{n+1} - z_n, \frac{z_n - z}{r_n} - \frac{z_{n+1} - z}{r_{n+1}} \right\rangle \geq 0.
\]
Thus, we have
\[
\left\langle z_{n+1} - z_n, \frac{z_n - z}{r_n} - \frac{z_{n+1} - z}{r_{n+1}} \right\rangle \geq \langle Az_{n+1} - Az_n, z_{n+1} - z_n \rangle
\]
and hence
\[
\langle z_{n+1} - z_n, z_{n+1} - z_n \rangle + \left(1 - \frac{r_n}{r_{n+1}}\right) (z_{n+1} - z) \geq \langle Az_{n+1} - Az_n, z_{n+1} - z_n \rangle
\]
Since \(A\) is continuous monotone mapping, we have
\[
-\|z_{n+1} - z_n\|^2 + \left\langle z_{n+1} - z_n, \left(1 - \frac{r_n}{r_{n+1}}\right) (z_{n+1} - z) \right\rangle \geq 0.
\]
So, we get
\[
\|z_{n+1} - z_n\|^2 \leq \left\langle z_{n+1} - z_n, \left(1 - \frac{r_n}{r_{n+1}}\right) (z_{n+1} - z) \right\rangle \leq \|z_{n+1} - z_n\| \left|1 - \frac{r_n}{r_{n+1}}\right| \|z_{n+1} - z\|.
\]
Without loss of generality, let us assume that there exists a real number \(b\) such that \(r_n > b > 0\) for all \(n \in \mathbb{N}\). Then
\[
\|T_{r_{n+1}} z - T_r z\| = \|z_{n+1} - z_n\| \leq \frac{1}{r_{n+1}} |r_{n+1} - r_n| \|T_{r_{n+1}} z - z\| \leq \frac{1}{b} |r_{n+1} - r_n| \|T_{r_{n+1}} z - z\|. \tag{4.6}
\]
Let \(u \in GMEP(F, A, \psi)\) and \(M = \sup \{\|z - u\|: z \in C\}\). Then
\[
\|T_{r_{n+1}} z - z\| \leq \|T_{r_{n+1}} z - u\| + \|u - z\| = \|T_{r_{n+1}} z - T_{r_{n+1}} u\| + \|u - z\| \leq 2\|z - u\|.
\]
This together with (4.6), we have
\[
\sup \|T_{r_{n+1}} z - T_r z\| : z \in C \leq \frac{2M}{b} |r_{n+1} - r_n|.
\]
Since $\sum_{n=1}^{\infty} |r_{n+1} - r_n| < \infty$, we obtain $\sum_{n=1}^{\infty} \sup \{ \| T_{r_{n+1}} z - T_{r_n} z \| : z \in C \} < \infty$. By Lemma 2.4, we define a mapping T by $Tx = \lim_{n \to \infty} T_{r_n}x$ for all $x \in C$.

Next, we prove that $F(T) = \cap_{n=1}^{\infty} F(T_{r_n})$. It easy to see that $\cap_{n=1}^{\infty} F(T_{r_n}) \subset F(T)$. Let $w \in F(T)$. For $n \in \mathbb{N}$, let $w_n = T_{r_n}w$. Then

$$F(w_n, y) + \langle Aw_n, y - w_n \rangle + \psi(y) - \psi(w_n) + \frac{1}{r_n} \langle y - w_n, w_n - w \rangle \geq 0$$

for all $y \in C$. By (A2), we obtain $\frac{1}{r_n} \langle y - w_n, w_n - w \rangle \geq F(y, w_n) + \langle Aw_n, w_n - y \rangle - \psi(y) + \psi(w_n)$ for all $y \in C$. Since $w_n \to w$, A is continuous monotone mapping, ψ is lower semi-continuous mapping and from (A4), we have $0 \geq F(y, w) + \langle Aw, w - y \rangle - \psi(y) + \psi(w)$ for all $y \in C$. Put $u_t = ty + (1-t)w$ for all $t \in (0,1]$ and $y \in C$. Thus, we note that

$$0 = F(u_t, u_t) + \langle Aw, u_t - u_t \rangle + \psi(u_t) - \psi(u_t)$$

$$= F(ty + (1-t)w, ty + (1-t)w) + \langle Aw, (ty + (1-t)w) - u_t \rangle$$

$$\leq tF(ty + (1-t)w, y) + (1-t)F(ty + (1-t)w, w) + t\langle Aw, y - u_t \rangle$$

$$+ (1-t)\langle Aw, w - u_t \rangle$$

$$= t[F(ty + (1-t)w, y) + \langle Aw, y - u_t \rangle]$$

$$+ (1-t)[F(ty + (1-t)w, w) + \langle Aw, w - u_t \rangle]$$

$$\leq t[F(ty + (1-t)w, y) + \langle Aw, y - u_t \rangle].$$

So, $F(ty + (1-t)w, y) + \langle Aw, y - u_t \rangle \geq 0$ for all $y \in C$. Letting $t \to 0^+$ and using (A3), A is continuous monotone mapping. So, we obtain $F(w, y) + \langle Aw, y - w \rangle \geq 0$ for all $y \in C$. Thus $w \in GMEP(F, A, \psi)$. It follows that $w \in \cap_{n=1}^{\infty} F(T_{r_n})$. Hence $\{T_{r_n}\}$ satisfy condition in Theorem 3.1. So, we obtain the desired result by using Theorem 3.1. \hfill \Box

Acknowledgement. The authors would like to thank the referees for the insightful comments and suggestions. Moreover, the authors gratefully acknowledge the Thailand Research Fund Master Research Grants (TRF-MAG, MRG-WI515S029) for funding this paper.

References

Received: April, 2011