On Sum-Connectivity Index of Polyomino Chains

Jianguang Yang, Fangli Xia and Shubo Chen

Department of Mathematics, Hunan City University
Yiyang, Hunan 413000, P.R. China
hunancity@gmail.com

Abstract

If G is a (molecular) graph with n vertices, and d_i is the degree of its i-th vertex, then the sum-connectivity index of G is the sum of the weights $(d_u + d_v)^{-\frac{1}{2}}$ of all edges uv of G. A polyomino system is a finite 2-connected plane graph such that each interior face (or say a cell) is surrounded by a regular square of length one. Formulas for calculating the sum-connectivity index of polyomino chains are provided.

Mathematics Subject Classification: 05C12, 05C05

Keywords: Sum-connectivity index, Randić index, polyomino chains

1 Introduction

The structure of a molecule could be represented in a variety of ways. The information on the chemical constitution of molecule is conventionally represented by a molecular graph. And graph theory was successfully provided the chemist with a variety of very useful tools, namely, topological indices. One of the oldest and most thoroughly examined molecular graph-based structural descriptor of organic molecule is the Wiener index or Wiener number [1].

In 1975, Randić introduced a molecular structure-descriptor in his study of alkanes[2] which he called the branching index, and is now called the the Randić index, is a graph-based molecular structure descriptor that is most frequently applied in quantitative structure-property and structure-activity studies[2-6]. It is defined as the sum over all edges of the (molecular) graph of the terms $(d_ud_v)^{-\frac{1}{2}}$, where u and v are the vertices of the edge $uv \in E(G)$, and d_u (or d_v) is the degree of the vertex u (or v), i.e.,

$$R(G) = \sum_{uv \in E(G)} (d_ud_v)^{-\frac{1}{2}} \quad (1)$$
The Randić index has been closely correlated with many chemical properties [3-6].

The sum-connectivity index of the graph G, denoted by $\chi(G)$, is defined as[7]:

$$\chi(G) = \sum_{uv \in E(G)} (d_u + d_v)^{-\frac{1}{2}}$$ (2)

Let ij denotes the edge with degree i, j, resp. The sum-connectivity index can be rewritten as

$$\chi(G) = \sum_{i \sim j} \frac{1}{\sqrt{i + j}}$$

Sum-connectivity index belongs to a family of Randić-like indices, is a new variant of the famous Randić connectivity index usable in quantitative structure-property relationship and quantitative structure-activity relationship studies, the uses of the sum-connectivity index in modeling a number of molecular properties is presented in the monograph entitled Novel Molecular Structure Descriptors - Theory and Applications I, edited by Gutman and Furtula[10].

For convenience, we might sometimes call $R(G)$ the product-connectivity index of G. These two molecular descriptors are highly intercorrelated quantities[8]. In [7], the authors provided several basic properties for sum-connectivity index, especially lower and upper bounds in terms of sum-connectivity index, determined the unique tree with given numbers of vertices and pendant vertices with the minimum value of the sum-connectivity index, and trees with the minimum, second minimum and third minimum, and with the maximum, second maximum and third maximum values of the sum-connectivity index, and discussed properties of the sum-connectivity index for a class of trees representing acyclic hydrocarbons. In [9], some properties of the sum-connectivity index for trees and unicyclic graphs with given matching number were obtained.

In the paper, we will give formulas for calculating the sum-connectivity index of polyomino chains.

2 Preliminary Notes

A polyomino system is a finite 2-connected plane graph such that each interior face (or say a cell) is surrounded by a regular square of length one. In other words, it is an edge-connected union of cells in the planar square lattice. A polyomino chain is a polyomino system, in which the joining of the centers of its adjacent regular forms a path $c_1c_2\cdots c_n$, where c_i is the center of the i-th square. Let B_n be the set of polyomino chains with n squares, the number of edges in B_n is $3n + 1$. $B_n \in B_n$. If the subgraph of B_n induced by the vertices with degree 3 is a graph with exactly $n - 2$ squares, then B_n is called a linear
chain and denoted by L_n. If the subgraph of B_n induced by the vertices with
degree bigger than two is a path with $n - 1$ edges, then B_n is called a zig-zag
chain and denoted by Z_n.

A kink of a polyomino chain is the branched or angularly connected squares.
A segment of a polyomino chain is a maximal linear chain in the polyomino
chains, including the kinks and/or terminal squares at its end. The number
of squares in a segment S is called its length and is denoted by $l(S)$. For
any segment S of a polyomino chain with $n \geq 2$ squares, $2 \leq l(S) \leq n$.
Particularly, for a linear chain L_n with n squares, we have $s = 1$ and $l_1 = n$.
For a zig-zag chain Z_n with n squares, we have $s = n - 1$ and $l_1 = 2$.

A polyomino chain consists of a sequence of segments S_1, S_2, \ldots, S_s, $s \geq 1$,
with lengths $l(S_i) = l_i$, $i = 1, 2, \ldots, s$, where $l_1 + l_2 + \cdots + l_s = n + s - 1$(where
n denote the number of squares of a polyomino chain) since two neighboring
segments have always one square in common.

3 The sum-connectivity index of polyomino
chains

In following, we shall calculating the sum-connectivity index of polyomino
chains.

Theorem 3.1 Let L_n, Z_n be the polyomino chains depicted in Figure 1. Then

\[
\chi(L_n) = \begin{cases}
2, & n = 1; \\
1 + \frac{4\sqrt{7}}{3} + \frac{\sqrt{7}}{6}(3n - 5), & n \geq 2.
\end{cases}
\]

\[
\chi(Z_n) = \begin{cases}
2, & n = 1; \\
1 + \frac{4\sqrt{7}}{3} + \frac{\sqrt{7}}{6}, & n = 2; \\
\left(\frac{\sqrt{2}}{4} + \frac{\sqrt{6}}{3}\right)n + 1 + \frac{4\sqrt{7}}{5} + \frac{2\sqrt{7}}{7} - \frac{2\sqrt{6}}{3} - \frac{3\sqrt{7}}{4}, & n \geq 3.
\end{cases}
\]

Proof. When $n = 1, 2$, it is suffice to see the results, in our following
discussion, we assume that $n \geq 3$.

The total number of edges in L_n and Z_n is $3n + 1$. Let n_{ij} be the number
of edges with degree i, j. Thus,

(i) For the polyomino chain L_n, $n_{22} = 2$, $n_{23} = 4$ and $n_{33} = 3n + 1 - (2 + 4) = 3n - 5$. By the definition of Randić index, we have

\[
\chi(L_n) = \sum_{1 \leq i, j \leq n-1} \frac{1}{\sqrt{i+j}} = \frac{2}{\sqrt{2+2}} + \frac{4}{\sqrt{2+3}} + \frac{3n-5}{\sqrt{3+3}} = 1 + \frac{4\sqrt{7}}{5} + \frac{\sqrt{7}}{6}(3n - 5)
\]

(ii) By the same way, we have

\[
\chi(Z_n) = \left(\frac{\sqrt{2}}{4} + \frac{\sqrt{6}}{3}\right)n + 1 + \frac{4\sqrt{7}}{5} + \frac{2\sqrt{7}}{7} - \frac{2\sqrt{6}}{3} - \frac{3\sqrt{7}}{4}
\]
Theorem 3.2 Let $B^1_n(n \geq 3)$ be a polyomino chain with n squares and consisting of s segments S_1, S_2 with lengths $l_1 = 2, l_2 = n - 1$. Then

$$
\chi(B^1_n) = \begin{cases}
1 + \frac{4\sqrt{5}}{5} + \frac{\sqrt{6}}{3} + \frac{2\sqrt{7}}{7}, & n = 3; \\
\frac{\sqrt{6}}{2} n + 1 + \sqrt{5} + \frac{3\sqrt{7}}{7} - \frac{3\sqrt{6}}{2}, & n \geq 4.
\end{cases}
$$

Proof. For $n = 3$, it is trivial, we omit it here. When $n \geq 4$, it is suffice to see that, $n_{22} = 2, n_{23} = 5, n_{24} = 1, n_{34} = 3, n_{33} = 3n + 1 - 2 - 5 - 1 - 3 = 3n - 10$. Thus

$$
\chi(B^2_n) = \frac{2}{\sqrt{2+2}} + \frac{5}{\sqrt{2+3}} + \frac{1}{\sqrt{2+4}} + \frac{3}{\sqrt{3+4}} + \frac{3n-10}{\sqrt{4+4}}
$$

In our following discussion, we assume that $2 \leq l(i) \leq n - 1$ with $1 \leq i \leq s$.

Theorem 3.3 Let $B^2_n(n \geq 4)$ be a polyomino chain with n squares and consisting of s segments S_1, S_2, \cdots, S_s ($s \geq 3$) with lengths $l_1 = l_s = 2, l_2, \cdots, l_{s-1} \geq 3$. Then

$$
\chi(B^2_n) = \begin{cases}
\frac{5}{4} + \frac{2\sqrt{11}}{3} + \frac{\sqrt{6}}{3} + \sqrt{2}, & n = 4; \\
\frac{3\sqrt{6}}{4} n + (\frac{2\sqrt{5}}{6} + \frac{4\sqrt{7}}{7} - \frac{3\sqrt{6}}{2}) s + 1 + \frac{\sqrt{6}}{3} + \frac{3\sqrt{7}}{4} - \frac{6\sqrt{5}}{7}, & n \geq 5.
\end{cases}
$$

Proof. When $n = 4$, it is trivial. We assume $n \geq 5$. In B^2_n, we know $n_{22} = 2, n_{23} = 2s, n_{24} = 2, n_{34} = 4s - 6, n_{33} = 3n + 1 - 2 - 2s - 2 - (4s - 6) = 3n - 6s + 3$. Thus

$$
\chi(B^2_n) = \frac{2}{\sqrt{2+2}} + \frac{2s}{\sqrt{2+3}} + \frac{2}{\sqrt{2+4}} + \frac{4s-6}{\sqrt{3+4}} + \frac{3n-6s+3}{\sqrt{4+4}}
$$

Similarly, we have

Theorem 3.4 Let B^3_n be a polyomino chain with n squares and consisting of s segments S_1, S_2, \cdots, S_s ($s \geq 3$) with lengths $l_1 = 2, l_2, \cdots, l_{s-1}, l_s \geq 3$ or $l_s = 2, l_1, l_2, \cdots, l_{s-1} \geq 3$. Then

$$
R(B^3_n) = \frac{\sqrt{6}}{2} n + (\frac{2\sqrt{5}}{5} + \frac{4\sqrt{7}}{7} - \sqrt{6}) s + 1 + \frac{\sqrt{5}}{5} + \frac{2\sqrt{6}}{3} - \frac{5\sqrt{7}}{7}
$$

Theorem 3.5 Let B^4_n be a polyomino chain with n squares and consisting of s segments S_1, S_2, \cdots, S_s ($s \geq 3$) with lengths $l_i \geq 3 (i = 1, 2, \cdots, s)$. Then

$$
R(B^4_n) = \frac{\sqrt{6}}{2} n + (\frac{2\sqrt{5}}{5} + \frac{4\sqrt{7}}{7} - \sqrt{6}) s + 1 + \frac{2\sqrt{5}}{5} + \frac{\sqrt{6}}{6} - \frac{4\sqrt{7}}{7}
$$

Acknowledgements. Projects supported by the Research Foundation of Education Bureau of Hunan Province, China(Grant No. 10B015) and the Science and Technology of Hunan City University(Grant No. 2010xj006).
Sum-connectivity index of polyomino chains

References

Received: September, 2010