Weak and Strong Convergence Theorem of Iterative Scheme for Generalized Equilibrium Problems and Fixed Point Problems of Asymptotically Strict Pseudo-Contraction Mappings

S. Sanhana, I. Inchanb,c and W. Sanhan a,c1

aDepartment of Mathematics, Faculty of Liberal Arts and Science, Kasetsart University Kamphaeng Saen Campus, Nakhonpathom 73140, Thailand

bDepartment of Mathematics and Computer, Faculty of Science and Technology Uttaradit Rajabhat University, 53000, Thailand

cCentre of Excellence in Mathematics, CHE, Si Ayutthaya Road, Bangkok 10400, Thailand

Abstract

In this paper, we introduce an iterative scheme for finding a common element of the set of fixed points of asymptotically k-strict pseudo-contractive mappings and the set of solution of the generalized equilibrium problems in a Hilbert space. Then, we prove weak and strong convergence theorems of the sequences generated by our proposed scheme. Our results extended and improve the results of Ceng, Al-Homidan, Ansari and Yao, [An iterative scheme for equilibrium problems and fixed point problems of strict pseudo-contraction mappings, J. Computational and Applied Mathematics, 223(2009) 967-974] and many other.

Mathematics Subject Classification: 46C05, 47D03, 47H09, 47H10, 47H20

Keywords: Asymptotically k-strict pseudo-contractive mappings; Equilibrium problems; Fixed points problems; Opial’s condition

1Corresponding author;
Email addresses: winate_s@yahoo.com (W. Sanhan)
1 Introduction

Let H be a real Hilbert space and let C be a nonempty closed convex subset of H. A mapping S of C into itself is nonexpansive if $\|Sx - Sy\| \leq \|x - y\|, \forall x, y \in C$. The set of fixed points of S is denoted by $F(S)$. Let F be a bifunction of $C \times C$ into \mathbb{R}, where \mathbb{R} is the real numbers. The equilibrium problem for $F : C \times C \to \mathbb{R}$ is to find $x \in C$ such that

$$F(x, y) \geq 0 \text{ for all } y \in C.$$ \hspace{1cm} (1)

The set of solutions of (1) is denoted by $EP(F)$. Numerous problems in physics, optimization, and economics reduce to find a solution of (1). In 1997, Combettes and Hirstoaga [4] introduced an iterative scheme of finding the best approximation to the initial data when $EP(F)$ is nonempty and proved a strong convergence theorem.

Let $A : C \to H$ be a mapping. The classical variational inequality, denoted by $VI(C, A)$, is to find $x^* \in C$ such that

$$\langle Ax^*, v - x^* \rangle \geq 0$$

for all $v \in C$. The variational inequality has been extensively studied in the literature. See, e.g. [8] and the references therein. Let $B : C \to H$ be a nonlinear mapping. Then, we consider the following equilibrium problem: Find $z \in C$ such that

$$F(z, y) + \langle Bz, y - z \rangle \geq 0, \forall y \in C$$ \hspace{1cm} (2)

The set of such $z \in C$ is denoted by EP, i.e.,

$$EP = \{z \in C : F(z, y) + \langle Bz, y - z \rangle \geq 0, \forall y \in C\}.$$

In the case of $B \equiv 0$, EP is denoted by $EP(F)$. In the case of $F \equiv 0$, EP is also denoted by $VI(C, A)$. A mapping A of C into H is called α-inverse-strongly monotone [2] if there exists a positive real number α such that

$$\langle Au - Av, u - v \rangle \geq \alpha \|Au - Av\|^2$$

for all $u, v \in C$.

We know that a Hilbert space H satisfies Opial’s condition [12], that is, for any sequence $\{x_n\} \subset H$ with $x_n \rightharpoonup x$, the inequality

$$\liminf_{n \to \infty} \|x_n - x\| < \liminf_{n \to \infty} \|x_n - y\|$$

holds for every $y \in H$ with $y \neq x$.

Recall that a mapping $T : C \rightarrow C$ is said to be a strict pseudo-contractive mapping \cite{2} if there exists a constant $0 \leq k < 1$ such that
\begin{equation}
\|Tx - Ty\|^2 \leq \|x - y\|^2 + k\|(I - T)x - (I - T)y\|^2,
\end{equation}
for all $x, y \in C$. (If (1) holds, we also say that T is a k-strict pseudo-contraction.)

It is known that if T is 0-strict pseudo-contractive mapping, T is nonexpansive mapping.

In this paper we will consider an iteration method of modified Mann for asymptotically k-strict pseudo-contractive mapping. We say that $T : C \rightarrow C$ is an asymptotically k-strict pseudo-contractive mapping if there exists a constant $0 \leq k < 1$ satisfying
\begin{equation}
\|T^nx - T^ny\|^2 \leq k_n\|x - y\|^2 + k\|(I - T^nx)x - (I - T^ny)y\|^2,
\end{equation}
for all $x, y \in C$ and for all $n \in \mathbb{N}$ where $k_n \geq 1$ for all n such that $\lim_{n \to \infty} k_n = 1$. We see that the class of k-strict pseudo-contractive mappings is an asymptotically k-strict pseudo-contractive mapping if $k_n = 1$ for all $n \in \mathbb{N}$. Moreover, if $k = 0$, then T is asymptotically nonexpansive mapping, i.e. there exists a sequence $k_n \geq 1$ for all n such that $\lim_{n \to \infty} k_n = 1$ such that
\begin{equation}
\|T^n x - T^n y\| \leq k_n\|x - y\|,
\end{equation}
for all $x, y \in C$ and $n \geq 1$.

If T is a nonexpansive self-mapping of C, then Mann’s algorithm generates, initializing with an arbitrary $x_1 \in C$, a sequence according to the recursive manner
\begin{equation}
x_{n+1} = \alpha_n x_n + (1 - \alpha_n)Tx_n, \quad \forall n \geq 1,
\end{equation}
where $\{\alpha_n\}_{n=1}^{\infty}$ is a real sequence in the interval $(0, 1)$. Then the sequence $\{x_n\}$ converges weakly to a fixed point of T.

Very recently, Ceng, Homidan, Ansari and Yao \cite{3} introduced the sequence generated by an arbitrary element $x_1 \in H$ and follows by
\begin{equation}
\begin{cases}
F(u_n, y) + \frac{1}{r_n}\langle y - u_n, u_n - x_n \rangle \geq 0, \forall y \in C \\
x_{n+1} = \alpha_n u_n + (1 - \alpha_n)S u_n, \quad \forall n \geq 1
\end{cases}
\end{equation}
where S is k-strict pseudo-contractive mapping. Then under controls conditions they prove $\{x_n\}$ and $\{u_n\}$ weak and strong convergent to element in $F(S) \cap EP(F)$.

\textbf{Weak and strong convergence theorem of iterative scheme 1979}
Motivated and inspired by the results of Ceng, Homidan, Ansari and Yao [3], in this paper we improve the iterative scheme (7) to a mapping S is asymptotically k-strict pseudo-contractive mapping and for generalized equilibrium problems (2), then we prove the sequence converges weakly and strongly to common element of $F(S) \cap EP$.

2 Preliminary

Let H be a real Hilbert space with norm $\| \cdot \|$ and inner product $\langle \cdot, \cdot \rangle$ and let C be a closed convex subset of H. For every point $x \in H$, there exists a unique nearest point in C, denote by P_Cx, such that

$$\| x - P_Cx \| \leq \| x - y \|, \text{ for all } y \in C.$$ P_C is called the metric projection of H onto C. It is well known that P_C is a nonexpansive mapping of H onto C and satisfied

$$\langle x - y, P_Cx - P_Cy \rangle \geq \| P_Cx - P_Cy \|^2$$

for every $x, y \in H$. Moreover, P_Cx is characterized by the following properties:

$$\| x - y \|^2 \geq \| x - P_Cx \|^2 + \| y - P_Cx \|^2$$

for all $x \in H$, $y \in C$.

We collect some lemmas which will be used in the proof for the main result.

Lemma 2.1. [5] For a real Hilbert space H, the following identities hold:

(i) $\| x + y \|^2 = \| x \|^2 + \| y \|^2 + 2 \langle x, y \rangle$, $\forall x, y \in H$;

(ii) $\| x - y \|^2 = \| x \|^2 - \| y \|^2 - 2 \langle x, y \rangle$, $\forall x, y \in H$;

(iii) $\| tx + (1-t)y \|^2 = t\| x \|^2 + (1-t)\| y \|^2 - t(1-t)\| x - y \|^2$ for all $x, y \in H$ and $t \in [0, 1]$;

(iv) If $\{ x_n \}$ is a sequence in H weakly convergent to z, then

$$\limsup_{n \to \infty} \| x_n - y \|^2 = \limsup_{n \to \infty} \| x_n - z \|^2 + \| z - y \|^2, \forall y \in H.$$

Lemma 2.2. [10] Let T be an asymptotically k-strictly pseudo-contractive mapping defined on a bounded closed convex subset C of a Hilbert space H. Assume that $\{ x_n \}$ is a sequence in C with the properties
(i) \(x_n \rightharpoonup z \) and
(ii) \(Tx_n - x_n \to 0 \).

Then \((I - T)z = 0 \).

Lemma 2.3. \([5]\) Let \(C \) be a closed convex subset of a real Hilbert space \(H \). Given \(x \in H \) and \(z \in C \). Then \(z = P_C x \) if and only if there holds the inequality
\[
\langle x - z, y - z \rangle \leq 0, \quad \forall y \in C.
\]

Lemma 2.4. \([11]\) Let \(\{r_n\}, \{s_n\} \) and \(\{t_n\} \) be a three nonnegative sequences satisfying the following condition:
\[
r_{n+1} \leq (1 + s_n)r_n + t_n, \quad \forall n \in \mathbb{N}.
\]

If \(\sum_{n=1}^{\infty} s_n < \infty \) and \(\sum_{n=1}^{\infty} t_n < \infty \), then the \(\lim_{n \to \infty} r_n \) exists.

Lemma 2.5. \([10]\) Assume that \(C \) is a closed convex subset of a Hilbert space \(H \) and let \(T : C \to C \) be an asymptotically \(k \)-strictly pseudo-contraction. Then the following hold:

(i) For each \(n \geq 1 \), \(T^n \) satisfies the Lipschitz condition:
\[
\|T^n x - T^n y\| \leq L_n \|x - y\|
\]
for all \(x, y \in C \), where \(L_n = \frac{k + \sqrt{1 + \gamma_n (1 - k)}}{1 - k} \).

(ii) The demiclosedness principle holds for \(I - T \) in the sense that if \(\{x_n\} \) is a sequence in \(C \) such that \(x_n \rightharpoonup x \) and \((I - T)x_n \to 0 \), then \((I - T)x = 0 \).

(iii) The fixed point set \(F(T) \) is closed and convex so that the projection \(P_{F(T)} \) is well defined.

For solving the equilibrium problem for a bifunction \(F : C \times C \to \mathbb{R} \), let us assume that \(F \) satisfies the following condition:

(A1) \(F(x, x) = 0 \) for all \(x \in C \);

(A2) \(F \) is monotone, i.e., \(F(x, y) + F(y, x) \leq 0 \) for all \(x, y \in C \);

(A3) for each \(x, y \in C \),
\[
\lim_{t \to 0} F(tz + (1 - t)x, y) \leq F(x, y);
\]

(A4) for each \(x \in C \), \(y \mapsto F(x, y) \) is convex and lower semicontinuous.

The following lemma appears implicitly in \([1]\).
Lemma 2.6. \cite{1, 6} Let C be a nonempty closed convex subset of H and let F be a bifunction of $C \times C$ into \mathbb{R} satisfying (A1)-(A4). Let $r > 0$ and $x \in H$. Then, there exists $z \in C$ such that
\[
F(z, y) + \frac{1}{r} \langle y - z, z - x \rangle \geq 0 \quad \text{for all } y \in C.
\]

The following lemma was also given in \cite{1}.

Lemma 2.7. \cite{1, 6, 7} Assume that $F : C \times C \to \mathbb{R}$ satisfies (A1)-(A4), and let $r > 0$ and $x \in H$. Then, there exists unique $z \in C$ such that
\[
F(z, y) + \frac{1}{r} \langle y - z, z - x \rangle \geq 0 \quad \text{for all } y \in C.
\]

Further, if $T_r x = \{ z \in C : F(z, y) + \frac{1}{r} \langle y - z, z - x \rangle \geq 0, \forall y \in C \}$, then the following hold:

1. T_r is single-valued;
2. T_r is firmly nonexpansive, i.e., $\|T_r x - T_r y\|^2 \leq \langle T_r x - T_r y, x - y \rangle$, for any $x, y \in H$;
3. $F(T_r) = EP(F)$;
4. $EP(F)$ is closed and convex;

3 Weak convergence theorems

In this section, we prove a strong convergence theorem of the hybrid parallel method for a family of finitely strictly pseudo-contractive mappings in a real Hilbert space.

Theorem 3.1. Let C be a nonempty closed convex subset of a real Hilbert space H. Let $F : C \times C \to \mathbb{R}$ be a bifunction satisfying (A1)-(A4). Let B be an β-inverse strongly monotone mapping of C into H and let $S : C \to C$ be an asymptotically k-strictly pseudo-contractive self mapping for some $0 \leq k < 1$ such that $\sum_{n=1}^{\infty} (k_n - 1) < \infty$ and $F(S) \cap EP \neq \emptyset$. Let $\{x_n\}$ and $\{u_n\}$ be sequences generated initially by an arbitrary element $x_1 \in H$ and then by
\[
\begin{align*}
F(u_n, y) + \langle Bx_n, y - u_n \rangle + \frac{1}{r_n} \langle y - u_n, u_n - x_n \rangle \geq 0, \forall y \in C \\
x_{n+1} = \alpha_n u_n + (1 - \alpha_n) S^n u_n, \quad \forall n \geq 1
\end{align*}
\]
where \(\{\alpha_n\} \) and \(\{r_n\} \) satisfy the following conditions:

(i) \(\{\alpha_n\} \subset [\alpha, \gamma] \) for some \(\alpha, \gamma \in (k, 1) \);

(ii) \(\{r_n\} \subset [0, 2\beta] \) and \(\lim \inf r_n > 0 \).

Then, the sequence \(\{x_n\} \) and \(\{u_n\} \) converges weakly to an element of \(F(S) \cap EP \).

Proof. We show that \(\lim_{n \to \infty} \|x_n - p\| \) exists for each \(p \in F(S) \cap EP \). Let \(p \in F(S) \cap EP \). From the definition of \(T_r \), we have \(u_n = T_{r_n}(x_n - r_nBx_n) \). Since \(0 \leq r_n \leq 2\beta \), we have

\[
\|u_n - p\|^2 = \|T_{r_n}(x_n - r_nBx_n) - T_{r_n}(p - r_nBp)\|^2 \\
\leq \|(x_n - r_nBx_n) - (p - r_nBp)\|^2 \\
\leq \|(x_n - p) - r_n(Bx_n - Bp)\|^2 \\
\leq \|x_n - p\|^2 - 2r_n\langle x_n - p, Bx_n - Bp \rangle + r_n^2\|Bp - Bx_n\|^2 \\
\leq \|x_n - p\|^2 - 2r_n\beta\|Bx_n - Bp\|^2 + r_n^2\|Bp - Bx_n\|^2 \\
\leq \|x_n - p\|^2. \tag{13}
\]

Since \(S \) is asymptotically \(k \)-strictly pseudo-contractive, we have \(\{\alpha_n\} \in [\alpha, \beta], \alpha, \beta \in (k, 1) \) and \(k \leq \alpha_n \), we have

\[
\|x_{n+1} - p\|^2 = \|\alpha_n u_n + (1 - \alpha_n)S^\alpha u_n - p\|^2 \\
= \|\alpha_n (u_n - p) + (1 - \alpha_n)(S^\alpha u_n - p)\|^2 \\
= \alpha_n\|u_n - p\|^2 + (1 - \alpha_n)\|S^\alpha u_n - p\|^2 - \alpha_n(1 - \alpha_n)\|u_n - S^\alpha u_n\|^2 \\
\leq \alpha_n\|u_n - p\|^2 + (1 - \alpha_n)\left[k_n\|u_n - p\|^2 + k\|u_n - S^\alpha u_n\|^2\right] \\
- \alpha_n(1 - \alpha_n)\|u_n - S^\alpha u_n\|^2 \\
\leq k_n\|u_n - p\|^2 - (1 - \alpha_n)(\alpha_n - k)\|u_n - S^\alpha u_n\|^2 \tag{14} \\
\leq k_n\|x_n - p\|^2 - (1 - \alpha_n)(\alpha_n - k)\|u_n - S^\alpha u_n\|^2 \tag{15} \\
\leq (1 + (k_n - 1))\|x_n - p\|^2. \tag{16}
\]

It follows from Lemma 2.4 that \(\lim_{n \to \infty} \|x_n - p\| \) exists and hence \(\{x_n\} \) is bounded and we also obtain that \(\{u_n\} \) is bounded. Also, from (14) and \(\lim_{n \to \infty} k_n = 1 \) it follows that

\[
(1 - \gamma)(\alpha - k)\|u_n - S^\alpha u_n\|^2 \leq (1 - \alpha_n)(\alpha_n - k)\|u_n - S^\alpha u_n\|^2 \\
\leq k_n\|x_n - p\|^2 - \|x_{n+1} - p\|^2. \tag{17}
\]

This implies that

\[
\lim_{n \to \infty} \|u_n - S^\alpha u_n\| = 0. \tag{18}
\]
From (14) and (12), we have
\[
\|x_{n+1} - p\|^2 \leq k_n \|u_n - p\|^2 - (1 - \alpha_n)(\alpha_n - k)\|u_n - S^n u_n\|^2
\]
\[
\leq k_n \left[\|x_n - p\|^2 - r_n(2\beta - r_n)\|Bx_n - Bp\|^2 \right].
\]
It follows that
\[
r_n(2\beta - r_n)\|Bx_n - Bp\|^2 \leq \|x_n - p\|^2 - \frac{1}{k_n} \|x_{n+1} - p\|^2.
\]
So, from the existence of \(\lim_{n \to \infty} \|x_n - p\| \), \(\lim_{n \to \infty} k_n = 1 \) and \(\lim \inf r_n > 0 \), we have
\[
\lim_{n \to \infty} \|Bx_n - Bp\| = 0. \tag{19}
\]
From \(T_n \) is firmly nonexpansive and by using Lemma 2.7, we have
\[
\|u_n - p\|^2 = \|T_n(x_n - r_n Bx_n) - T_n(p - r_n Bp)\|^2
\]
\[
\leq \langle (x_n - r_n Bx_n) - (p - r_n Bp), u_n - p \rangle
\]
\[
= \frac{1}{2}(\|x_n - r_n Bx_n\|^2 + \|u_n - p\|^2 - \|x_n - r_n Bx_n\|^2 - \|u_n - p\|^2)
\]
\[
\leq \frac{1}{2}(\|x_n - p\|^2 + \|u_n - p\|^2 - \|x_n - u_n\|^2 - \|r_n(Bx_n - Bp)\|^2)
\]
\[
= \frac{1}{2}(\|x_n - p\|^2 + \|u_n - p\|^2 - \|x_n - u_n\|^2 + 2r_n\langle x_n - u_n, Bx_n - Bp \rangle
\]
\[
- r_n^2\|Bx_n - Bp\|^2).
\]
Thus, we obtain
\[
\|u_n - p\|^2 \leq \|x_n - p\|^2 - \|x_n - u_n\|^2 + 2r_n\langle x_n - u_n, Bx_n - Bp \rangle - r_n^2\|Bx_n - Bp\|^2. \tag{20}
\]
From (14) and (20), we have
\[
\|x_{n+1} - p\|^2 \leq k_n \left[\|x_n - p\|^2 - \|x_n - u_n\|^2 + 2r_n\langle x_n - u_n, Bx_n - Bp \rangle - r_n^2\|Bx_n - Bp\|^2 \right]
\]
\[- (1 - \alpha_n)(\alpha_n - k)\|u_n - S^n u_n\|^2.
\]
It follows that
\[
\|x_n - u_n\|^2 \leq \|x_n - p\|^2 - \frac{1}{k_n} \|x_{n+1} - p\|^2 + 2r_n\langle x_n - u_n, Bx_n - Bp \rangle
\]
\[- r_n^2\|Bx_n - Bp\|^2 - \frac{1}{k_n}(1 - \alpha_n)(\alpha_n - k)\|u_n - S^n u_n\|^2.
\]
By using \(\lim_{n \to \infty} \|x_n - p\| \) exists, (18), (19) and boundedness of \(\{x_n\} \) and \(\{u_n\} \), we have

\[
\lim_{n \to \infty} \|x_n - u_n\| = 0. \tag{21}
\]

Next, we show that \(\|x_{n+1} - x_n\| \to 0 \). In fact, from (21), we note that

\[
\|x_{n+1} - x_n\| \leq \|x_{n+1} - u_n\| + \|x_n - u_n\| = \|\alpha_n u_n + (1 - \alpha_n)S^n u_n - u_n\| + \|x_n - u_n\|
= (1 - \alpha_n)\|u_n - S^n u_n\| + \|x_n - u_n\|.
\]

From (18) and (21), we obtain

\[
\lim_{n \to \infty} \|x_{n+1} - x_n\| = 0. \tag{22}
\]

Next, we show that \(\lim_{n \to \infty} \|Su_n - u_n\| = 0 \). From Lipschitz condition on \(S \), we have

\[
\|Su_n - u_n\| \leq \|Su_n - S^{n+1} u_n\| + \|S^{n+1} u_n - S^{n+1} u_{n+1}\| + \|S^{n+1} u_{n+1} - u_{n+1}\|
+ \|u_{n+1} - u_n\|
\leq L_1 \|u_n - S^n u_n\| + L_{n+1} \|u_n - u_{n+1}\| + \|S^{n+1} u_{n+1} - u_{n+1}\|
\leq L_1 \|u_n - S^n u_n\| + (1 + L_{n+1}) \|u_{n+1} - u_n\| + \|S^{n+1} u_{n+1} - u_{n+1}\|
\leq L_1 \|u_n - S^n u_n\| + (1 + L_{n+1}) \|u_{n+1} - x_{n+1}\| + \|x_{n+1} - u_n\|
+ \|S^{n+1} u_{n+1} - u_{n+1}\|
\leq L_1 \|u_n - S^n u_n\| + (1 + L_{n+1}) \|u_{n+1} - x_{n+1}\|
+(1 - \alpha_n)\|u_n - S^n u_n\| + \|S^{n+1} u_{n+1} - u_{n+1}\|.
\]

From (18) and (21), we have

\[
\lim_{n \to \infty} \|Su_n - u_n\| = 0. \tag{23}
\]

Since \(\{u_{n_i}\} \) is bounded, there exists a subsequence \(\{u_{n_{i_j}}\} \) of \(\{u_{n_i}\} \) such that \(u_{n_{i_j}} \to w \). Without loss of generality, we can assume that \(u_{n_i} \to w \). Since \(C \) is closed and convex, \(w \in C \). Next, we show that \(w \in F(S) \cap EP \). It follows by (38) and (A2) that

\[
\langle Bx_n, y - u_n \rangle + \frac{1}{r_n} \langle y - u_n, u_n - x_n \rangle \geq F(y, u_n)
\]

and hence

\[
\langle Bx_n, y - u_{n_i} \rangle + \langle y - u_{n_i}, \frac{u_{n_i} - x_{n_i}}{r_{n_i}} \rangle \geq F(y, u_{n_i}) \tag{24}
\]
Put $y_t = ty + (1 - t)w$ for all $t \in (0, 1]$ and $y \in C$. Since $y \in C$ and $w \in C$, we have $y_t \in C$. So, from (21), we have

\[\langle y_t - u_n, By_t \rangle - \langle y_t - u_n, B y_t \rangle = 0 \geq -\langle y_t - u_n, B x_n \rangle - \langle y - u_n, \frac{u_n - x_n}{r_n} \rangle + F(y_t, u_n) \]

and hence

\[\langle y_t - u_n, By_t \rangle \geq \langle y_t - u_n, B y_t \rangle - \langle y_t - u_n, B x_n \rangle - \langle y - u_n, \frac{u_n - x_n}{r_n} \rangle + F(y_t, u_n) \]

\[= \langle y_t - u_n, B y_t - B u_n \rangle + \langle y_t - u_n, B u_n - B x_n \rangle - \langle y - u_n, \frac{u_n - x_n}{r_n} \rangle + F(y_t, u_n). \]

Since $\|u_n - x_n\| \to 0$, it follows that $\|B u_n - B x_n\| \to 0$. Further, from monotonicity of B, we get

\[\langle y_t - u_n, By_t - B u_n \rangle \geq 0. \]

So, from (A4), we have

\[\langle y_t - w, By_t \rangle \geq F(y_t, w), \tag{25} \]

as $i \to \infty$. From (A1), (A4) and (21), we have

\[0 = F(y_t, y_t) \leq tF(y_t, y) + (1 - t)F(y_t, w) \leq tF(y_t, y) + (1 - t)\langle y_t - w, By_t \rangle \]

\[\leq tF(y_t, y) + (1 - t)\langle y - w, By_t \rangle \]

and hence $0 \leq F(y_t, y) + (1 - t)\langle y - w, B y_t \rangle$. Letting $t \to 0$, we have for each $y \in C$, $0 \leq F(w, y) + \langle y - w, Bw \rangle$. This implies that $w \in EP$. Next, we show that $w \in F(S)$. Since S is asymptotically k-strict contraction mapping, by Lemma 2.5 (ii), we know that the mapping $I - S$ is demiclosed at zero. Note that $\|u_n - S u_n\| \to 0$ and $u_{n_j} \to w$. Thus, $w \in F(S)$. Consequently, we deduce that $w \in F(S) \cap EP$. Since w was an arbitrary element, we conclude that $\omega_w(x_n) \subset F(S) \cap EP$. We claim that $\{x_n\}$ and $\{u_n\}$ converge weakly to an element of $F(S) \cap EP$. We take $w_1, w_2 \in \omega_w(x_n)$ arbitrarily and let $\{x_{k_i}\}$ and $\{x_{m_j}\}$ be subsequences of $\{x_n\}$ such that $x_{k_i} \to w_1$ and $x_{m_j} \to w_2$, respectively. Since $\lim_{n\to\infty} \|x_n - p\|$ exists for each $p \in F(S) \cap EP$ and since
$w_1, w_2 \in F(S) \cap EP$, by Lemma 2.1 (iv), we obtain

\[
\lim_{n \to \infty} \|x_n - w_1\|^2 = \lim_{j \to \infty} \|x_{m_j} - w_1\|^2 = \lim_{j \to \infty} \|x_{m_j} - w_2\|^2 + \|w_2 - w_1\|^2 = \lim_{i \to \infty} \|x_k - w_2\|^2 + \|w_2 - w_1\|^2 = \lim_{i \to \infty} \|x_k - w_1\|^2 + 2\|w_2 - w_1\|^2 = \lim_{n \to \infty} \|x_n - w_1\|^2 + \|w_2 - w_1\|^2.
\]

Hence $w_1 = w_2$. This shows that $\omega_w(x_n)$ is a single-point set. This completes the proof. \(\Box \)

Consequence of the Theorem 3.1, we can obtain the corollaries.

Corollary 3.2. [3] Let C be a nonempty closed convex subset of a real Hilbert space H. Let $F : C \times C \to \mathbb{R}$ be a bifunction satisfying (A1)-(A4). Let $S : C \to C$ be a k-strictly pseudo-contractive self mapping for some $0 \leq k < 1$ such that $F(S) \cap EP(F) \neq \emptyset$. Let $\{x_n\}$ and $\{u_n\}$ be sequences generated initially by an arbitrary element $x_1 \in H$ and then by

\[
F(u_n, y) + \frac{1}{r_n} \langle y - u_n, u_n - x_n \rangle \geq 0, \forall y \in C
\]

\[x_{n+1} = \alpha_n u_n + (1 - \alpha_n) Su_n, \quad \forall n \geq 1 \tag{26}\]

where $\{\alpha_n\}$ and $\{r_n\}$ satisfy the following conditions:

(i) $\{\alpha_n\} \subset [\alpha, \beta]$ for some $\alpha, \beta \in (k, 1)$;

(ii) $\{r_n\} \subset (0, \infty)$ and $\lim \inf r_n > 0$.

Then, the sequence $\{x_n\}$ and $\{u_n\}$ converge weakly to an element of $F(S) \cap EP(F)$.

Proof. Put $k_n = 1$ for all $n \in \mathbb{N}$ and $B \equiv 0$ in Theorem 3.1, we have $\{x_n\}$ generated by (26) converges weakly an element of $F(S) \cap EP(F)$. \(\Box \)

Corollary 3.3. Let C be a nonempty closed convex subset of a real Hilbert space H. Let $F : C \times C \to \mathbb{R}$ be a bifunction satisfying (A1)-(A4). Let B be an β-inverse strongly monotone mapping of C into H and let $S : C \to C$ be an asymptotically nonexpansive self mapping such that $F(S) \cap EP \neq \emptyset$. Let $\{x_n\}$ and $\{u_n\}$ be sequences generated initially by an arbitrary element $x_1 \in H$ and then by

\[
\begin{cases}
F(u_n, y) + \langle B x_n, y - u_n \rangle + \frac{1}{r_n} \langle y - u_n, u_n - x_n \rangle \geq 0, \forall y \in C \\
x_{n+1} = \alpha_n u_n + (1 - \alpha_n) S^n u_n, \quad \forall n \geq 1
\end{cases} \tag{27}
\]
where \(\{\alpha_n\} \) and \(\{r_n\} \) satisfy the following conditions:

(i) \(\{\alpha_n\} \subset [\alpha, \beta] \) for some \(\alpha, \beta \in (0, 1) \);

(ii) \(\{r_n\} \subset (0, \infty) \) and \(\lim \inf r_n > 0 \).

Then, the sequence \(\{x_n\} \) and \(\{u_n\} \) converges weakly to an element of \(F(S) \cap EP \).

Proof. We know that asymptotically nonexpansive mapping is an asymptotically \(0 \)-strictly pseudo-contractive mapping. \(\square \)

Theorem 3.4. Let \(C \) be a nonempty closed convex subset of a real Hilbert space \(H \). Let \(F : C \times C \to \mathbb{R} \) be a bifunction satisfying (A1)-(A4). Let \(B \) be an \(\beta \)-inverse strongly monotone mapping of \(C \) into \(H \) and let \(S : C \to C \) be an asymptotically \(k \)-strictly pseudo-contractive self mapping for some \(0 \leq k < 1 \) such that \(\sum_n (k^n - 1) < \infty \) and \(F(S) \cap EP \neq \emptyset \). Let \(\{x_n\} \) and \(\{u_n\} \) be sequences generated initially by an arbitrary element \(x_1 \in H \) and then by

\[
\begin{align*}
F(u_n, y) + \langle Bx_n, y - u_n \rangle + \frac{1}{r_n} \langle y - u_n, u_n - x_n \rangle & \geq 0, \quad \forall y \in C \\
x_{n+1} = \alpha_n u_n + (1 - \alpha_n)S^\alpha u_n, \quad \forall n \geq 1
\end{align*}
\]

where \(\{\alpha_n\} \) and \(\{r_n\} \) satisfy the following conditions:

(i) \(\{\alpha_n\} \subset [\alpha, \gamma] \) for some \(\alpha, \gamma \in (k, 1) \);

(ii) \(\{r_n\} \subset (0, \infty) \) and \(\lim \inf r_n > 0 \).

Then, the sequence \(\{x_n\} \) and \(\{u_n\} \) converges strongly to an element of \(F(S) \cap EP \) if and only if \(\lim \inf \frac{n}{\infty} d(x_n, F(S) \cap EP) = 0 \), where \(d(x_n, F(S) \cap EP) \) denote the metric distance from the point \(x_n \) to \(F(S) \cap EP \).

Proof. From the proof in Theorem 3.1, we know that \(\lim_{n \to \infty} \|x_n - p\| \) exists each \(p \in F(S) \cap EP \) and \(\lim_{n \to \infty} \|x_n - u_n\| = 0 \). Hence \(\{x_n\} \) is bounded. The necessity is apparent. We show the sufficiency. Suppose that

\[
\lim_{n \to \infty} d(x_n, F(S) \cap EP) = 0
\]

From (16) we have

\[
\|x_{n+1} - p\| \leq \|x_n - p\|.
\]

Taking the infimum over \(p \in F(S) \cap EP \), we have

\[
d(x_{n+1}, F(S) \cap EP) \leq d(x_n, F(S) \cap EP)
\]
and hence $\lim_{n \to \infty} d(x_n, F(S) \cap EP)$ exists. Thus, we have

$$\lim_{n \to \infty} d(x_n, F(S) \cap EP) = \lim_{n \to \infty} \inf d(x_n, F(S) \cap EP) = 0. \quad (31)$$

Now, it follows from (29), that for all $p \in F(S) \cdot EP$

$$\|x_{n+m} - p\| \leq \|x_{n+m} - p\| + \|x_n - p\| \leq 2\|x_n - p\|. \quad (32)$$

Taking the infimum over all $p \in F(S) \cap EP$, from (32) we obtain

$$\|x_{n+m} - p\| \leq 2d(x_n, F(S) \cap EP). \quad (33)$$

Thus $\{x_n\}$ is a cauchy sequence. Suppose $x_n \rightharpoonup w \in H$. Then

$$d(w, F(S) \cap EP) = \lim_{n \to \infty} d(x_n, F(S) \cap EP) = 0.$$

Since $F(S) \cap EP$ is closed and convex, $w \in F(S) \cap EP$. Since $\lim_{n \to \infty} \|x_n - u_n\| = 0$, then we have both sequence $\{x_n\}$ and $\{u_n\}$ are converge strongly to an element w of $F(S) \cap EP$. \hfill \Box

Consequence of the Theorem 3.1, we can obtain the corollaries.

Corollary 3.5. [3] Let C be a nonempty closed convex subset of a real Hilbert space H. Let $F : C \times C \to \mathbb{R}$ be a bifunction satisfying (A1)-(A4). Let $S : C \to C$ be a k-strictly pseudo-contractive self mapping for some $0 \leq k < 1$ such that $F(S) \cap EP(F) \neq \emptyset$. Let $\{x_n\}$ and $\{u_n\}$ be sequences generated initially by an arbitrary element $x_1 \in H$ and then by

$$\begin{cases}
F(u_n, y) + \frac{1}{r_n} \langle y - u_n, u_n - x_n \rangle \geq 0, \forall y \in C \\
x_{n+1} = \alpha_n u_n + (1 - \alpha_n) Su_n, \quad \forall n \geq 1
\end{cases} \quad (34)$$

where $\{\alpha_n\}$ and $\{r_n\}$ satisfy the following conditions:

(i) $\{\alpha_n\} \subset [\alpha, \beta]$ for some $\alpha, \beta \in (k, 1)$;

(ii) $\{r_n\} \subset (0, \infty)$ and $\lim inf r_n > 0$.

Then, the sequence $\{x_n\}$ and $\{u_n\}$ converge strongly to an element of $F(S) \cap EP(F)$ if and only if

$$\lim_{n \to \infty} \inf d(x_n, F(S) \cap EP(F)) = 0. \quad \Box$$

4 Applications

Using the Theorem 3.1 we can applied the following Theorems.
Theorem 4.1. Let C be a nonempty closed convex subset of H $S : C \to C$ be a k-strictly pseudo-contraction mapping for some $0 \leq k < 1$ such that $F(S) \neq \emptyset$. Let $\{x_n\}$ be a sequence generated by an arbitrary $x_1 \in H$ and then by

$$x_{n+1} = \alpha_n P_Cx_n + (1 - \alpha_n)SPCx_n, \quad \forall n \geq 1,$$

where $\{\alpha_n\} \subset [\alpha, \beta]$ for some $\alpha, \beta \in (k, 1)$. Then, $\{x_n\}$ converges weakly to an element of $F(S)$.

Proof. Put $F(x, y) = 0$ for all $x, y \in C$, $B \equiv 0$ and $r_n = 1$ for all $n \in \mathbb{N}$ in Theorem 3.1. Then by Lemma 2.3, we have $u_n = P_Cx_n$. So, from Theorem 3.1, the sequence $\{x_n\}$ generated by (35) converges weakly to an element of $F(S)$.

Theorem 4.2. Let C be a nonempty closed convex subset of a real Hilbert space H. Let $F : C \times C \to \mathbb{R}$ be a bifunction satisfying (A1)-(A4). Let $S : C \to C$ be a nonexpansive self mapping such that $F(S) \cap EP(F) \neq \emptyset$. Let $\{x_n\}$ and $\{u_n\}$ be sequences generated initially by an arbitrary element $x_1 \in H$ and then by

$$x_{n+1} = \alpha_n u_n + (1 - \alpha_n)Su_n, \quad \forall n \geq 1 \quad (36)$$

where $\{\alpha_n\}$ and $\{r_n\}$ satisfy the following conditions:

(i) $\{\alpha_n\} \subset [\alpha, \beta]$ for some $\alpha, \beta \in (0, 1)$;

(ii) $\{r_n\} \subset (0, \infty)$ and $\lim \inf r_n > 0$. Then, $\{x_n\}$ and $\{u_n\}$ converge weakly to an element of $F(S) \cap EP(F)$.

Proof. If $k_n = 1$ for all $n \in \mathbb{N}$ and $k = 0$ of a mapping S in (4), we have S is nonexpansive mapping. Then the conclusion follows immediately from Theorem 3.1.

Using the Theorem 3.4 we can applied the following Theorems.

Theorem 4.3. Let C be a nonempty closed convex subset of H $S : C \to C$ be a k-strictly pseudo-contraction mapping for some $0 \leq k < 1$ such that $F(S) \neq \emptyset$. Let $\{x_n\}$ be a sequence generated by an arbitrary $x_1 \in H$ and then by

$$x_{n+1} = \alpha_n P_Cx_n + (1 - \alpha_n)SPCx_n, \quad \forall n \geq 1,$$

where $\{\alpha_n\} \subset [\alpha, \beta]$ for some $\alpha, \beta \in (k, 1)$. Then, $\{x_n\}$ converges strongly to an element of $F(S)$ if and only if $\lim \inf \limits_{n \to \infty} d(x_n, F(S)) = 0$.

Theorem 4.4. Let C be a nonempty closed convex subset of a real Hilbert space H. Let $F : C \times C \to \mathbb{R}$ be a bifunction satisfying (A1)-(A4). Let $S : C \to C$ be a nonexpansive self mapping such that $F(S) \cap EP(F) \neq \emptyset$. Let \{${x_n}$\} and \{${u_n}$\} be sequences generated initially by an arbitrary element $x_1 \in H$ and then by

$$
\begin{aligned}
F(u_n, y) + \frac{1}{r_n} \langle y - u_n, u_n - x_n \rangle &\geq 0, \forall y \in C \\
x_{n+1} = \alpha_n u_n + (1 - \alpha_n) Su_n, \quad \forall n \geq 1
\end{aligned}
$$

(38)

where \{${\alpha_n}$\} and \{${r_n}$\} satisfy the following conditions :

(i) \{${\alpha_n}$\} $\subset [\alpha, \beta]$ for some $\alpha, \beta \in (0, 1)$;

(ii) \{${r_n}$\} $\subset (0, \infty)$ and $\lim \inf r_n > 0$.

Then, the sequence \{${x_n}$\} and \{${u_n}$\} converges strongly to an element of $F(S) \cap EP(F)$ if and only if

$$
\lim \inf_{n \to \infty} d(x_n, F(S) \cap EP(F)) = 0.
$$

ACKNOWLEDGEMENTS. The author would like to thank the Faculty of Liberal Arts and Science Kasetsart University, Kamphaeng Saen Campus Research Fund for their financial support and The Thailand Research Fund and the Commission on Higher Education under grant MRG5380081 and Centre of Excellence in Mathematic, CHE. Moreover, we would like to thank Prof. Dr. Somyot Plubiteng for providing valuable suggestions and also would like to thank the referee for comments.

References

Received: December, 2010