Some Formulas for the Multiple Twisted (h,q)-Euler Polynomials and Numbers

Burak Kurt

Akdeniz University, Faculty of Arts and Science
Department of Mathematics, 07058-Antalya, Turkey
burakkurt@akdeniz.edu.tr

Abstract

By using p-adic q-deformed fermionic integral on \mathbb{Z}_p, we define multiple the twisted (h,q)-Euler numbers of order α and polynomials of order α. After we obtain the multiplication formulae for the multiple twisted (h,q)-Euler polynomials. Also the multiple alternating sum obtained at the twisted (h,q)-Euler polynomials and the twisted (h,q)-Euler numbers.

Mathematics Subject Classification: 05A10, 11B65, 28B99, 11B68

Keywords: p-adic q-deformed fermionic integral, twisted q-Euler polynomials, alternating sums

1 Introduction

Let p be a fixed odd prime number. Throughout this paper $\mathbb{Z}_p,\mathbb{Q}_p$ and \mathbb{C}_p are respectively; the ring of p-adic rational integers, the field of p-adic rational numbers and the p-adic completion of the algebraic closure of \mathbb{Q}_p. The p-adic absolute value in \mathbb{C}_p is normalized so that $|p|_p = \frac{1}{p}$. When one talks about q-extension, q is variously considered as an indeterminate, a complex number, $q \in \mathbb{C}_p$ or a p-adic number $q \in \mathbb{C}_p$. If $q \in \mathbb{C}_p$, one normally assumes that $|q| < 1$. If $q \in \mathbb{C}_p$, one normally assumes that $|1 - q|_p < p^{-\frac{1}{p-1}}$ so that $q^x = \exp(x \log q)$ for each $x \in \mathbb{Z}_p$. We use the notations

$$[x]_q = \frac{1 - q^x}{1 - q},$$

$$[x]_{-q} = \frac{1 - (-q)^x}{1 + q} \quad (1)$$

$$[x]_{-q} = \frac{1 - (-q)^x}{1 + q}$$
For a fixed odd positive integer \(d\) with \((p, d) = 1\), set
\[
X^* = \bigcup_{0 < a < dp \atop (a, p) = 1} (a + dp\mathbb{Z}_p),
\]
where \(a \in \mathbb{Z}_p\) lies in \(0 < a < dp\). For any \(n \in \mathbb{N}\)
\[
\mu_q(a + dp^n\mathbb{Z}_p) = \frac{q^a}{[dp^n]_q}
\]
is known to be a distribution on \(X\) ([1], [15]). We say that \(f\) is uniformly differentiable function at a point \(a \in \mathbb{Z}_p\) and denote this property by \(f \in UD(\mathbb{Z}_p)\) if the difference quotients
\[
F_f(x, y) = \frac{f(x) - f(y)}{xy}
\]
have a limit \(l = f'(a)\) as \((x, y) \to (a, a)\) ([1], [3], [4], [8]). The \(p\)-adic \(q\)-integral of a function \(f \in UD(\mathbb{Z}_p)\) was defined as
\[
I_q(f) = \int_{\mathbb{Z}_p} f(x) d\mu_q(x) = \lim_{n \to \infty} \frac{1}{[p^n]_q} \sum_{x=0}^{p^n-1} f(x)q^x
\]
([1], [4], [8], [9], [11], [13]).

The \(q\)-deformed \(p\)-adic invariant on \(\mathbb{Z}_p\), in the fermonic sense is defined by
\[
I^{-q}(f) = \int_{\mathbb{Z}_p} f(x) d\mu^{-q}(x) = \lim_{n \to \infty} \frac{1}{[p^n]_{-q}} \sum_{x=0}^{p^n-1} f(x)(-q)^x
\]
([4], [13]) from (5), we write as
\[
qI^{-q}(f_1) + I^{-q}(f) = [2]_q f(0)
\]
where \(f_1(x) = f(x + 1)\).

Lemma 1.1 *(Multinomial identity [5. p. 28 theorem B])* If \(x_1, x_2, \ldots, x_m\) are commuting elements of a ring \((\leftrightarrow x_i x_j = x_j x_i, 1 \leq i \leq j \leq m)\), then we have for all integers \(n \geq 0\);
\[
(x_1 + x_2 + \cdots + x_m)^n = \sum_{a_1, a_2, \ldots, a_m \geq 0 \atop a_1 + a_2 + \cdots + a_m = n} \binom{n}{a_1, a_2, \ldots, a_m} x_1^{a_1} x_2^{a_2} \cdots x_m^{a_m}
\]
the last summation takes place over all positive or zero integers $a_i \geq 0$ such that $a_1 + a_2 + \cdots + a_m = n$ where \(\binom{n}{a_1,a_2,\ldots,a_m} = \frac{n!}{a_1!a_2!\cdots a_m!} \) are called multinomial coefficients defined by [5. p. 28].

Lemma 1.2 *(Generalized Multinomial identity [5. p. 41]*) If x_1, x_2, \ldots, x_m are commuting elements of a ring \(\Leftrightarrow x_ix_j = x_jx_i, 1 \leq i \leq j \leq m \), then we have for all real or complex variable α,

\[
(1 + x_1 + x_2 + \cdots + x_m)^\alpha = \sum_{v_1,v_2,\ldots,v_m \geq 0} \binom{\alpha}{v_1,v_2,\ldots,v_m} x_1^{v_1} x_2^{v_2} \cdots x_m^{v_m} \tag{7}
\]

the last summation takes place over all positive or zero integers $v_i \geq 0$ where;

\[
\binom{\alpha}{v_1,v_2,\ldots,v_m} = \frac{\{\alpha\}_{v_1+v_2+\cdots+v_m}}{v_1!v_2!\cdots v_m!} = \frac{\alpha(\alpha-1)(\alpha-2)\cdots(\alpha-(v_1+v_2+\cdots+v_{m+1}))}{v_1!v_2!\cdots v_m!}
\]

are called generalized multinomial coefficients defined by [5. p. 27] where

\[
\{a\}_k = a(a-1)(a-2)\cdots(a-k+1), \quad a \in \mathbb{C}.
\]

Jang in [5] defined the multiple twisted q-Euler numbers and polynomials on \mathbb{Z}_p. He obtained sums of consecutive multiple twisted q-Euler numbers. Also he constructed the multiple twisted Barnes’ type q-Euler polynomials and multiple twisted Barnes’ type q-Euler zeta functions. Özden et al in ([1], [2], [3], [4]) by using a p-adic q-Volkenborn integral. They constructed a new approach to generating functions of the (h, q)-Euler numbers and polynomials attached to a Dirichlet character χ. By applying the Mellin transformation and a derivative operator to these functions, they defined (h, q)-extensions of zeta functions. Min-Soo Kim et al in ([13], [14]) gave the existence of multiple twisted p-adic q-Euler ζ-functions and l-functions. Also they obtained some relations on these functions. Simsek in ([4], [15]) by using the fermonic p-adic q-integral and multinomial theorem, he constructed generating functions of the higher-order (h, q)-extension of Euler polynomials and numbers. Also he constructed Barnes’ type multiple (h, q)-Euler zeta function.

T. Kim et al ([8], [9], [10], [11], [12]) constructed q-Volkenborn integration. He gave some theorems and relations on the twisted q-Euler numbers and polynomials.

In this work, we prove the multiplication formulae for the multiple twisted (h, q)-Euler polynomials. Moreover we give a formulae the multiple alternating sums between the twisted (h, q)-Euler polynomials.
2 The Twisted (h, q)-Euler Polynomials And Numbers

In this section, we assume that $q \in \mathbb{C}$ with $|1 - q|_p < 1$. For $n \in \mathbb{N}$, by definition p-adic q-integral on \mathbb{Z}_p. We have

$$q^n I_q(f_n) + (-1)^{n-1} I_q(f) = [2]_q \sum_{x=0}^{n-1} (-1)^{n-1-x} q^x f(x)$$

(8)

where $f_n(x) = f(x + n)$.

Let $T_p = \bigcup_{n \geq 1} C_{p^n} = \lim_{n \to \infty} C_{p^n} = C_{p^\infty}$ be the locally constant space, where $C_{p^n} = \{w : w^{p^n} = 1\}$ is the cyclic group of order p^n. For $w \in T_p$, we denote the locally constant function by

$$\Phi_w : \mathbb{Z}_p \to \mathbb{C}_p, x \to w x$$

([1], [4], [9]). If we take $f_w(x, t) = w^x q^{hx e^{tx}}$ in (5), then we write as

$$w q^h e^t I_{-1}(w^x q^{hx e^{tx}}) + I_{-1}(w^x q^{hx e^{tx}}) = 2.$$ (9)

Using the above equation, define the twisted (h, q) extension of Euler numbers, $E_{n,w}(q)$ by means of the following generating function

$$I_{-1}(w^x q^{hx e^{tx}}) = \frac{2}{w^x q^{hx e^t} + 1} = \sum_{n=0}^{\infty} E_{n,w}(q) \frac{t^n}{n!}.$$ (10)

Remark 1 If $w \to 1$ and $q \to 1$, then the equation (10) reduces to classical Euler number

$$\frac{2}{e^t + 1} = \sum_{n=0}^{\infty} E_n \frac{t^n}{n!}.$$

Similarly, the twisted (h, q) extension of Euler polynomials are defined as

$$\frac{2}{w q^h e^t + 1} e^{xt} = \sum_{n=0}^{\infty} E_{n,w}(q) \frac{t^n}{n!}.$$ (11)

Definition 2.1 The twisted (h, q) extension of Euler numbers order α and the twisted (h, q) extension of Euler polynomials order α are defined as respectively

$$\sum_{n=0}^{\infty} E_{n,w}(q) \frac{t^n}{n!} = \left(\frac{2}{w q^h e^t + 1}\right)^\alpha,$$

(12)

$$\sum_{n=0}^{\infty} E_{n,w}(x, q) \frac{t^n}{n!} = \left(\frac{2}{w q^h e^t + 1}\right)^\alpha e^{xt}.$$ (13)
Theorem 2.2 \(m \in \mathbb{N}, \ n \in \mathbb{N}_0, \ q, \alpha \in \mathbb{C} \), the twisted \((h,q) \)-Euler polynomials order \(\alpha \) are satisfied the following multiplication formulae

\[
E_{n,w}^{(h,\alpha)}(mx, q) = \sum_{v_1,v_2,\cdots,v_{m-1} \geq 0} \binom{\alpha}{v_1,v_2,\cdots,v_{m-1}} (-wq^h)^r E_{n,w}^{(h^m,\alpha)}(x + \frac{r}{m})
\]

(14)

where \(r = v_1 + 2v_2 + \cdots + (m - 1)v_{m-1} \).

Proof. It is easy to observe that

\[
\frac{1}{wq^h e^t + 1} = - \frac{\sum_{k=0}^{m-1} (-q^h w e^t)^k}{(-q^h w e^t)^m + 1}
\]

(15)

for \(m \) odd, by equation (7, 13, 14).

\[
\sum_{n=0}^{\infty} E_{n,w}^{(h,\alpha)}(mx, q) \frac{t^n}{n!} = \left(\frac{2}{wq^h e^t + 1} \right)^\alpha e^{mt(x + \frac{r}{m})}
\]

where \(r = v_1 + 2v_2 + \cdots + (m - 1)v_{m-1} \). By comparing the coefficient \(\frac{t^n}{n!} \) in the both sides of the above equation. We easily arrive at (14). \(\blacksquare \)

We define the multiple alternating sums as

\[
Z_k^l(m; wq^h) = \sum_{0 \leq v_1,\cdots,v_m \leq l \atop v_1 + \cdots + v_m = l} (-1)^l \binom{l}{v_1,\cdots,v_m} (-qw)^{v_1 + \cdots + mv_m} (v_1 + \cdots + mv_m)^k.
\]

(16)
Theorem 2.3 For $m, n, l \in \mathbb{N}, \alpha \in \mathbb{C}$ the following recursive formulae for multiple twisted (h, q)-Euler polynomials order α is satisfying

$$Z_n^l(m; wq^h) = (wq^h)^{2^{-l}} \sum_{j=0}^{l} \left(\begin{array}{c} l \\ j \end{array} \right) (-1)^{(m+1)j} (q^h w^m j)$$

$$\times \sum_{k=0}^{n} \left(\begin{array}{c} n \\ k \end{array} \right) E_{k,w}^{(h,j)} (mj + l; q) E_{n-k}^{(h, l-j)} (q).$$

Proof. By equation (14, 16)

$$\sum_{n=0}^{\infty} Z_n^l(m; wq^h) \frac{t^n}{n!} = \sum_{n=0}^{\infty} (-1)^l \sum_{v_1, v_2, \cdots, v_m \leq l} \left(\begin{array}{c} l \\ v_1, v_2, \cdots, v_m \end{array} \right) (wq^h)^{v_1 + 2v_2 + \cdots + mv_m} \frac{t^n}{n!}$$

$$= (-1)^l \sum_{v_1, v_2, \cdots, v_m \leq l} \left(\begin{array}{c} l \\ v_1, v_2, \cdots, v_m \end{array} \right) (-q^h w^{v_1 + 2v_2 + \cdots + mv_m}) \frac{t^n}{n!}$$

$$= (wq^h e^t - w^2 q^{2h} e^{2t} + \cdots + (-1)^{m+1}(q^h w^m e^{mt})^l)$$

$$= \left(\frac{wq^h e^t + (-1)^{m+1}(q^h w^m e^{mt})^l}{wq^h e^t + 1} \right)$$

$$= \sum_{j=0}^{l} \left(\begin{array}{c} l \\ j \end{array} \right) \left(\frac{(-1)^{m+1}(q^h w^m e^{(m+1)t})^j}{wq^h e^t + 1} \right) \left(\frac{wq^h e^t}{wq^h e^t + 1} \right)^{l-j}$$

$$= \sum_{n=0}^{\infty} \left(\begin{array}{c} n \\ l \end{array} \right) 2^{-l} \sum_{j=0}^{l} \left(\begin{array}{c} l \\ j \end{array} \right) (-1)^{(m+1)j} (wq^h)^{mj}$$

$$\times \sum_{k=0}^{n} \left(\begin{array}{c} n \\ k \end{array} \right) E_{k,w}^{(h,j)} (mj + l; q) E_{n-k}^{(h, l-j)} (q) \frac{t^n}{n!}.$$

By comparing the coefficient $\frac{t^n}{n!}$ in the both sides of the above equation. We easily arrive at (17).

Acknowledgement This paper was supported by the Scientific Research Fund of Project Administration of Akdeniz University.
Some formulas for the multiple twisted (h,q)-Euler polynomials

References

Received: September, 2010