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1. Introduction

Fractional calculus has been used in a set of applications, mainly, to deal with
modelling errors in differential equations and dynamic systems. There are also
applications in Signal Processing and sampling and hold algorithms, [1-3]. Fractional
integrals and derivatives can be of non-integer orders and even of complex order. This
facilitates the description of some problems which are not easily descxribed by ordinary
calculus due to modelling errors, [1-5]. There are several approaches for the integral
fractional calculus, the most popular ones being the Riemann-Liouville fractional
integral. There is also a fractional Riemann- Liouville derivative. However, the well-
known Caputo fractional derivative are less involved since the associated integral
operator manipulates the derivatives of the primitive function under the integral symbol.
This paper extends the basic fractional differ-integral calculus to impulsive functions
described through the use of Dirac distributions and Dirac distributional derivatives,
[5], of real fractional orders. In the general case, it is admitted a presence of infinitely
many impulsive terms at certain isolated point of the relevant function domains.
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2. Extended Riemann- Liouville fractional integral

Let us denote the set of positive real numbers by R, ={reR:r>0} and left-sided and
right-sided Lebesgue integrals, respectively, as:

[59(z)dz:=lim jo (r)dz (the identification x=x is used for all x in order to
t—>x=x

simplify the notation), and
Ié g(z')dr::t Iime) g(z)dr

Now, consider real functions f,f:R, —R ,such that [} (x-t)*"f(t)dt exists, VxeR,,

fulfilling:

f(x)= f_(X)+ine|Mp Kid(x—x;)= F(X)+Zie|(w) K d(x—x;)

5(x) denotes the Dirac delta distribution, K i5(0):1‘(xi*)— f(x;)with K,;eR;
Viel(w)cz,,[5],and IMP:= [JIMP(x)= UIMP(x*) of indexing set 1 () is the whole

xeR ;. XeR
impulsive set defined via empty or non-empty) partial impulsive strictly ordered
denumerable sets:

IMP(x)::{xieR :f(xi*)—f( 5(0), x; <x} (1)
of indexing set 1(x):={ie Zy, : x;eIMP(x)}c]1 (x+)cz+,foreach xeR . ; and
IMP (x )< IMP (x* ):= {x, eR, f( - 1(x)=K ;8(0), x; <x7jcR )

)
of indexing set 1(x )cl(x ) {IeZO+ X;elMP x*)
)

with the indexing set of IMP being I (o ): U1 (x U(I () ) If we are interested in
xelMP(x) X eIMP

} z., foreach xeR .

studying the fractional derivative of the impulsive function f:R, —»Rthen f:R, »Ris
non- uniquely defined as f(x)=f(x) for xeR,\IMP, and f(x;)="f(x;),
f(xr)zf(xi)+|<i5(o)= f(x;)+K;s(0) , for x;eIMP with f(x+)eR( non-uniquely)
defined being bounded arbitrary (for instance, being zero or f (x +)= f(x)) if xelMP.
Note that IMPand I(x)have infinite cardinals if there are infinitely many impulsive
values of the function f{t).

Note  that the existence of  [J(x—t)#~"f(t)dt implies  that  of
[o (x=t)# £ (t)dt =[5 (x=t)“~" T (t)dt if xeIMP(x), since [;(x—t)*~"f(t)dt exists, and that

of
Jo" =0 0= e T o) )= £G)if xemele) )

Theorem 2.1. The extended fractional Riemann- Liouville integrals by considering
impulsive functions are defined for any fixed order # eR, and all xeR, by
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(974 £)(x):= L)jg (x=t)*""f (t)dt
= L e Todee X ex) (1 e )- (%)

I (u) 0
- ﬁ[ie.w}ﬁ?‘ (-0 F@e [T, Gttt 3 (k) (xr)—f<xi))j
4
(0 )b )= o 15 -
S L e S TR
- ﬁ[ielgu{o}ff;“ ottt 3 o) e e o (xi>)] (5)

(30 )l )=l 2 8)60z= 100

where 7':R,, - R,is the 7 - function , [1-5] and n:IMP—2Z, is defined by
n(x)=card I (x)= card IMP(x).
m

Note that if xeIMP then

(ww)(w);ﬁ{ > -0 @ Z(x—xi)”‘l(f(xi*)—f(xi))J

iel(xhHu{o} iel(x")

=(J “ f)(X)+(X—X n(x))”_l(f (X K(x))— f (Xn(x)))
(3 f)(x):L( Y )R dee Y (x-x) < (8 (x:)_f(xi))j

T(u) ieloouio} X iel(x)

and if x¢IMP, since 1(x")=1(x), then (J H f)(x+):(J H f)(x).

3. Extended Riemann- Liouville fractional derivative

Assume that feC ™! (R, ,R) and its m—th derivative exists everywhere in R, . Then,
the Caputo fractional derivative of order x>0with m-1<u(eR,)<m, mez, is for any

Xxe R, :
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(0#1) ()= (diJ (07 100 ] 0 s )

X m—u)
The following particular cases follow from this formula for g=m-1:

(a) u=-1;m=0yields (D o f )(X): J-OX f (t)dt which is the standard integral of the

function f. This case does not verifies the “derivative constraint ”0<m-1< u(eR,)<m
leading to an integral result.
(b) ) u=0; m=1yields (D Of )(x): f(x) which so that D f is the identity operator

(c) u=1; m=2yields (D1 f)(x): f (l)(x)
(d) u=2;m=3yields (sz)(x): f @(x) which is the standard first- derivative of the

function f.

Compared to the parallel cases with the Caputo fractional derivative, note that the
Riemann- Liouville fractional derivative, compared to the Caputo corresponding one,
does not depend on the conditions at zero of the function and its derivatives. Define the
Kronecker delta &(ab) of any pair of real numbers (ab)as &(a,b)=1if a=band

5(a,b)=0if azband then evaluate recursively the Riemann — Liouville fractional
derivative of order x>0 from the above formula by using Leibniz’s differentiation rule
by noting that , since w=m-j;Vj(€Z,)>1, only the differential part corresponding to
the differentiation of the integrand is non zero for j>m- . This yields the following:

Theorem 3.1. Assume that f eC ™2 (R, ,R)and f ™ Vexists everywhere in R, and that
f(t) is integrable on R ,, then:

(07100~ iy ) (-0 e )
:;(ij mfl[jg (m—u—1)(x—t)"#=2 £ (t)dt+ f (x)5(y,m—1)}

r(m-u)| dx
:ﬁ{ f (m—l)(x)a(y,m_1)+(dd_xj m_l(fg (M—p—1)(x—t)" 42 ¢ (t)dt)}

(8)
If fepck(R,,R) withf®(x) being discontinuous of first class
then f ™(x)=¢ (i (X)) (x) with j(x)=m-1-k(x), one uses to obtain the right value of (8)
the perhaps high-order distributional derivatives formula:

e R e g
X
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to yield

(D " )(X +): F(ml—y) { (—1))':(kx()x|;(x)! |f (m-1-k(x)) (X +)_ f (m=1k(0) () | 50)6(um-1)

{8 T -l vt Tl (5 <x—t)-<ﬂ+‘>f(t>dt)] (10)
j=0

If y:m—lthen= :
(o™ t)0) = ¢ <m-l><x>{f”r‘f f —yﬂ( NCRORIOT (i

i=0

provided that ( J'Ox (x—t)‘(””)f(t)dt) exists for xeR,(which is guaranteed if f(t) is

Lebesgue-integrable on R, ), feC™? (R, ,R)and f ™'exists everywhere in R,. The

correction  (10) applies ~ when  the  derivative  does  not  exist.
m

If uzm-1with m-1<u(eR,)<mthen after defining the impulsive sets, its associated
indexing sets and the function f:R, >R as for the extended Riemann- Liouville
fractional integral, one gets:

o#1)60) ﬁ{n [j-y]}( I et )
e

F(m—y) j=0
X[iel(xz):u{o} .[XXI (x—t) D £ (t)dt +j:;(x) (x—t) D g (t)dt+i€|Z(:X)(x—x i)‘(lH—l)(f (x i+)_ f(x ))]
(12)
I
x{ [2 =)V (dt+ i€|z(x)(x_x )7t ()= () (13)

4. Extended Caputo fractional derivative

Assume that feC ™! (R, ,R) and its m—th derivative exists everywhere in R, . Then,

the Caputo fractional derivative of order x>0with m-1<u(eR,)<m, mez, is for any

Xxe R, :

(D£ 1 )(x):=(3 =4 £ M) x) :ﬁ X (x=t)m#1 f (M) g)ae (14)
; m-1<pu<m, meZ _,

XeR ,
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The following particular cases occur with x=m-1leading to

(D )00 = ™)at = £ D (x)— £ (Do) (15)

(a) u=-1; m=0yields (D ! f)(x): f D (x)- f (‘1)(0+) which is an integral result f . Note
that this case does not verifies the “derivative constraint” 0< u(eR,)<m leading to an

f<
(c) u=1;m=2yields (Dl )(x): f O0(x)- f (1)(0+)
(d) u=2; m=3yields (D ?f)(x)= f @(x)- f @o*)

We can extend the above formula to real functions with impulsive m-th derivative as
follows. Assume that feC™?(R,,R) with bounded piecewise (m-1)-th derivative

m
existing everywhere in R, and f(m)(x)zd - fngx) being impulsive with
X

£ M(x;)=K i5(0)=(f (m“)(xr)— £ (m1(x i))5(0); Vx;eIMP , equivalently ,Viel(w), at the
eventual discontinuity points x; >0 at the impulsive set IMP:= [JIMP (x), where the

XeR
partial impulsive sets are re-defined as follows:
IMP (x):= {x;eR ,: f ™D (x7)- £ (x)=K;, x; <x | IMP(x*) (16)
|MP(X+):={Xi€R L f (m’l)(xi*)— FmD(x,)=K,,x; <x* }CIMP(X+) (17)

m
Now, consider feC™1(0,0) with f(m)(x)z%rgx)being almost everywhere
X

piecewise continuous in R, except possibly on a non-empty discrete impulsive set
IMP .Define a non-impulsive real function f:R, >R defined as f™(x)= ™ (x) for
xeRAMP , and  f ™x)=f™ ), f™x)=f™(x;)+k;50) for x;eIMP
with f (m)(x +): f(m)(x) ; xe IMP ( defined being bounded arbitrary (for instance, zero) if
xeIMP . Through a similar reasoning as that used for Riemann- Liouville fractional
integral by replacing the function f:R, —»R by its m-th derivative, one obtains the
following result:

Theorem 4.1. The Caputo fractional derivative of order ueR,
satisfyingm-1<u<m;meZ , and all xeR, is given below:

(0#)(x):= ﬁ X (=)™t (M)

1 (ﬁu-om—y-l Fg)at+ 3 (ex) ™ D) 1 <“’“)<Xi>)5(x‘x‘)]

iel (x)
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x[. I(; N J‘:;. (x—t)mw! f (m)(t)dt-'—.l.:;(x) (x—t)m' f (m)(t)dt+ 3 (x—x i)mﬁt—l(f (m—l)(xr)_ f(m’l)(Xi ))5(X—Xi )]

iel(x)

(13)
P e)b )= i G0 1
= 1 X (x—t)m-u-1f (m) n x—x )™ A D)= Dy s(x—x
r(m_ﬂ)[L)( S ] A R (Y .)}

e O T )£ bt

iel(xHufo} ' iel(x")

(19)
where n:IMP—Z, is a discrete function defined by n(x)=card I(x)=card IMP(x).
u
Note that if xeIMP then

1

o2 bt

m—u)

[ T ey g z<x—xi>mﬂ1(f<m”(xr)—f‘”“”“i))ﬁ(x‘xiﬂ

iel(x")

= (D 4 f)(X)+(X—X n(x))m_”_l(f (m‘l)(x ;(X))— f (m‘l)(x n(x)))5(0)

{ S ey e+ z<x—xi>m-ﬂ-l(f<m-‘>(xr)—f(”"”<Xi>)5(x‘x‘)]

iel(xyufo} ! iel(x)

and if xgIMP, since I(x")=1(x), then (fo f)(x*):(D,é‘ f)(x). The above formalism
applies when f (m-1) . g . >R is piecewise continuous with isolated first- class
discontinuity points, that is fePC ™(R,,R) implying that feC ™?(R,,R). A more
general situation arises when the discontinuities can point-wise arise for points of the
function itself of for any successive derivative up- till order m. This would lead to a
more general description than that given as follows. Define partial sets of positive
integers as k :={1,2,... .k }

Assume that fePCI(R,,R) and x is a discontinuity point of first class of f ()(x) for
some jem-1u{0}. Then , f(*)(x) are impulsive for fem—]j of high order being
increasing with ¢. Define the (j+1) — th impulsive sets of the function f on (0,x)cR as:

j
This leads directly the definition of the following impulsive sets:

|MP-+1(X)Z:{ZER+:Z<X, 0<‘f(j)(z+)—f (j)(z)‘<oo} ; jem-1u{o0}, xeR, (20)
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IMP; Z={X€R+Z 0<‘f Wxt)-t (j)(x)‘<oo}z Uyer, Py, (x) (21)
|MP2:{XGR+: 0<|f m(x*)—f (j)(x)|<oo,some jem-1u{0 }} Usxer, (Ulem o IMPJ+1( ))
(22)

which can be empty . Thus , if ze IMP;,; then f (j‘l)(x ) £ li- )( ) exists with identical

left and right limits, f m(x*)—f ()(x)=k =K (x)=0and f I)(x)=K5(0) with successive
higher-order derivatives represented by higher- order Dirac distributional derivatives

The above definitions yield directly the following simple results:

Assertion 5.2. xe IMP = x e IMP; for a unique j=j(x)em

Proof: Proceed by contradiction. Assume that xe(IMP,, nIMP;,,)  for
i,j(i)em-10{0}.Then:
O<‘f (i)(x+)—f (i)(x)‘<oo; 0<‘f m(x*)—f (j)(x)‘<oo

Assume with no loss of generality that j=i+k >i for some k(sm-i-1)eZ, . Then,

1 ) 1 ) <] 64 - <i+k>(x)‘:(-1x)#‘f )1 O(c) [ 5(0)=o0

withx eR, . If ‘f m(x*)—f (i)(x)‘;to which contradicts O<‘f (i)(x+)—f (i)(x)‘<ooso that

i=j.0

Assertion 5.3. xeIMP=|xeIMP; <3 aunique j = j(x)=max ‘ i (i‘l)(x+)—f (i‘l)(x)‘<oo
iem

Furthermore, such a unique j=j(x) satisfies ‘ £ (=) (x +)— f (i) (x)‘ >0.

Proof: The existence is direct by contradiction. If —3j=j(x)em-1u{0} such that

‘ f (j)(x +)— f (j)(x)‘<oo then x ¢ IMP. Now, assume there exist two nonnegative integers
i:i(x)z‘ 0 ()1 (i_l)(x)‘«zo and  j=j(x)=i+k =‘ gk xr) g (i+k_1)(x)‘<oo; for
some kem—i. But for x>0,

2 EDRKE 0o 00 o)< £ 40 ) <

which is a contradiction. Then,
xe IMPj =3 j = j(x)=max ‘ (1) (X+)—f (-1) (x)‘<oo which is unique. Also, from the
iem

¢ (j—l)(x+)_f (J'")(x)‘<002X€Uie]U{o} IMP i(x).

definition of the impulsive sets IMP(x)

Now , assume that xe|J; 1 IMP; i(x).

Iej—lu
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Thus, 0<‘ f (H)(ﬂ)—f (H)(x)‘«n:‘ f m(x*)—f (j)(x)‘:oo from the definition of the
impulsive sets. Then, xeIMP j(x). The opposite logic implication
j=j(x)=max ‘ £ (=) (x +)— £ (1) (X)‘<oo:> x € IMP; is proved. Then, it has been fully proved

lem

that

xe IMP =| x e IMP; <3 a unique j =j(x):rT1a§ ‘ f (H)(x+)—f (H)(x)‘<oo :

lem
Now, establish again a contradiction by assuming that
j:j(x):‘ f (k_l)(x+)—f (k‘l)(x)‘z max ‘ f (i_l)(x+)—f (i‘l)(x)‘:0<oo; vkem

what contradicts x € IMP . This proves that the unique j=j(X) implying and being implied
by xe IMP; satisfies ‘ f (j‘l)(x+)—f (j‘l)(x)‘ >0.

m
Using the necessary — high order distributional derivatives, one gets that

cetvp = 1 M= C LMD (G0 + ) g O)x))50); with jem—iu{o] being

x M)
uniquely defined so that 0<‘f (j)(x*)—f (j)(x)‘<oo. Thus, the m-th distributional

derivative of f:R ,— Rcan be represented as:

fm(x)= F(m)(x)+zxiE|MP_ (1) rm—j.)r i)!(f (j')(xi+ )—f(ji)(xi ))5(x—xi) , XeR

. m-j;
Jit! XI 1

with j;=j;(x;) being uniquely defied for each xjeIMPso that xe IMP; ., where
fec™(R,,R) with everywhere continuous first-derivative  defined as
fx)=t(x); xeR,, F(0)=f (0). The above formula is applicable if fePC™(R, ,R)

but it is also applicable if fePC ™(R, ,R) yielding:

£ ) £ M(x)= FM(x) if x ¢ 1MP

X
if x e IMP and
j<m-—1
£ = () £ 0t )= £ D) (£ )= () ) if xelMPand
j=m-1

for a unique j=j(x)}em-1u{0o} from Assertion 1. Denote further sets related to
impulses as follows:
IMP (x):={ze IMP :z < x }; |MP(X+)Z={Z€ IMP:z<x}; ¥xeR,
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Being indexed by two subsets of integers of the same corresponding cardinals defined
by:

I(x)=]=j(x) indexing the members z; of IMP(x) in increasing order
I(x+), being either 1(x) or 1(x)+1, indexing the members z; of IMP(x*) in increasing
order

The following result holds:

Theorem 5.4. The Caputo fractional derivative of f:R,—>R of order ueR,
satisfyingm-1<u<m;meZ ,and all xeR,is after using distributional derivatives
becomes in the most general case:

(Df f)(x):: ﬁjg (x—t)™#=1 £ (M)t

“F (0
oy (i (e ((m—i)(xig—l)! (£ 0D ) G0, ));;(XXi)J
iel(x) X = Xi m—j{xi -1

1 Xitl _t m—,u—lf(m)t dt X —t m-pu—1 f(m)t dt
—F(m_ﬂ)(iel(x)u{o};ﬁ (-1 g, ) 0

3 (™I o) (m_j(xi)__l)!l(f(j(xi))(xr)_f(j(xi))(xi))} (23)

iel(x) (x—x;)mili)-

(YR [ eq PH—— L i L ST R

r(m-
o0y ymea=t (M= JXD)=DN (G g )y
+iel%<£-)l) e (X—Xi)mj(xi)l(f J (X' ) r (X'))
_ 1 Xitl (y _\m-u—1 ¢ (m)
R 3 L (x )M M)t
F(m—ﬂ)[ie|(x+)u{0}jxi ) v
m—i(x; - -t (M= 0X) =D (¢ Gy + g Gilx

+i6%(+(_)1) i )](X—xi) # l(x_xi)m—J(Xi)—l(f(J( ))(Xi )_f(]( ))(Xi))} (24)

O

Note that ‘(D,{‘ f)(x*) = if x=x;eIMP, as expected.
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