Some Properties of Intuitionistic Fuzzy Normal Subrings

V. Veeramani

Shinas College of Technology
PO Box 77 PC 324, Shinas, Sultanate of Oman
jayaveer73@gmail.com

K. Arjunan

Department of Mathematics
St. Michael College of Engg & Tech.,
Kalayarkoil, Tamil Nadu, India
arjunan_1975@yahoo.co.in

N. Palaniappan

Department of Mathematics
Alagappa University
Karaikudi, Tamil Nadu, India
palaniappan.nallappan1950@gmail.com

Abstract

In this paper, we introduce the definition of intuitionistic fuzzy normal subrings. We also made an attempt to study the algebraic nature of intuitionistic fuzzy normal subrings of a ring under homomorphism and anti-homomorphism.

Mathematics Subject Classification: 03F55, 08A72, 20N25
Keywords: Intuitionistic fuzzy subsets, intuitionistic fuzzy subrings, intuitionistic fuzzy normal subrings

INTRODUCTION

After an introduction of fuzzy sets by L.A. Zadeh several researchers explored on the generalization of the notion of fuzzy set. The concept of intuitionistic fuzzy set was introduced K.T. Atanassov[2] as a generalization of the notion of a fuzzy set. In this paper, we discuss algebraic nature of intuitionistic fuzzy normal subrings and prove some results on these.

1. PRELIMINARIES

1.1 Definition: An intuitionistic fuzzy subset (IFS) A in X is defined as an object of the form

\[A = \{ < x, \mu_A(x), \nu_A(x) > / x \in X \}, \]

where \(\mu_A : X \to [0, 1] \) and \(\nu_A : X \to [0, 1] \) define the degree of membership and the degree of non-membership of the element \(x \in X \) respectively and for every \(x \in X \) satisfying \(0 \leq \mu_A(x) + \nu_A(x) \leq 1 \).

1.2 Definition: Let \((R, +, .)\) be a ring. An intuitionistic fuzzy subset A of R is said to be an intuitionistic fuzzy subring of R (IFSR) if it satisfies the following axioms:

(i) \(\mu_A(x – y) \geq \min\{ \mu_A(x), \mu_A(y) \} \)
(ii) \(\mu_A(xy) \geq \min\{ \mu_A(x), \mu_A(y) \} \)
(iii) \(\nu_A(x – y) \leq \max\{ \nu_A(x), \nu_A(y) \} \)
(iv) \(\nu_A(xy) \leq \max\{ \nu_A(x), \nu_A(y) \} \), for all \(x, y \in R \).

1.3 Definition: Let R be a ring. An intuitionistic fuzzy subring A of R is said to be an intuitionistic fuzzy normal subring (IFNSR) of R if it satisfies the following axioms:

(i) \(\mu_A(xy) = \mu_A(yx) \)
(ii) \(\nu_A(xy) = \nu_A(yx) \), for all \(x, y \in R \).

1.4 Definition: Let A and B be intuitionistic fuzzy subsets of the rings with an identity \(R_1 \) and \(R_2 \) respectively and A \(\times \) B is an intuitionistic fuzzy subring of \(R_1 \times R_2 \). Then the following are true:

(i) if \(\mu_A(x) \leq \mu_B(e^I) \) and \(\nu_A(x) \geq \nu_B(e^I) \), then A is an intuitionistic fuzzy subring of \(R_1 \).
(ii) if $\mu_B(x) \leq \mu_A(e)$ and $\nu_B(x) \geq \nu_A(e)$, then B is an intuitionistic fuzzy subring of R_2.

(iii) either A is an intuitionistic fuzzy subring of R_1 or B is an intuitionistic fuzzy subring of R_2.

1.5 Definition:
Let A and B be two intuitionistic fuzzy subrings of rings R_1 and R_2, respectively. The product of A and B, denoted by $A \times B$, is defined as $A \times B = \left\{ \left(\langle x, y \rangle, \mu_{A \times B}(x, y), \nu_{A \times B}(x, y) \right) \mid \text{for all } x \in R_1 \text{ and } y \in R_2 \right\}$, where $\mu_{A \times B}(x, y) = \min\{\mu_A(x), \mu_B(y)\}$ and $\nu_{A \times B}(x, y) = \max\{\nu_A(x), \nu_B(y)\}$.

2. SOME PROPERTIES OF INTUITIONISTIC FUZZY NORMAL SUBRING OF A RING

2.1 Theorem:
Let $(R, +, \cdot)$ be a ring. If A and B are two intuitionistic fuzzy normal subrings of R, then their intersection $(A \cap B)$ is an intuitionistic fuzzy normal subring of R.

Proof:
Let $x, y \in R$. Let $A = \left\{ \left(x, \mu_A(x), \nu_A(x) \right) \mid x \in R \right\}$ and $B = \left\{ \left(x, \mu_B(x), \nu_B(x) \right) \mid x \in R \right\}$ be intuitionistic fuzzy normal subrings of a ring R.
Let $C = A \cap B$ and $C = \left\{ \left(x, \mu_C(x), \nu_C(x) \right) \mid x \in R \right\}$, where, $\min\{\mu_A(x), \mu_B(x)\} = \mu_C(x)$ and $\max\{\nu_A(x), \nu_B(x)\} = \nu_C(x)$.
Clearly, C is an intuitionistic fuzzy subring of a ring R, since A and B are two intuitionistic fuzzy subrings of a ring R.
Now,
$$\mu_C(xy) = \min\{\mu_A(xy), \mu_B(xy)\} = \min\{\mu_A(yx), \mu_B(yx)\}, \text{ by definition}$$
$$\mu_C(xy) = \mu_C(yx).$$
Therefore,
$$\mu_C(xy) = \mu_C(yx), \text{ for all } x, y \in R.$$
Also,
$$\nu_C(xy) = \max\{\nu_A(xy), \nu_B(xy)\} = \max\{\nu_A(yx), \nu_B(yx)\}, \text{ by definition}$$
$$\nu_C(xy) = \nu_C(yx).$$
Therefore,
$$\nu_C(xy) = \nu_C(yx), \text{ for all } x, y \in R.$$
Hence intersection of any two intuitionistic fuzzy normal subrings is an intuitionistic fuzzy normal subring of a ring R.
2.2 Theorem:
Let A and B be intuitionistic fuzzy subsets of the rings, with an identity, \(R_1 \) and \(R_2 \) respectively and \(A \times B \) is an intuitionistic fuzzy normal subring of \(R_1 \times R_2 \). Then the following are true:

(i) if \(\mu_A(x) \leq \mu_B(e) \) and \(\nu_A(x) \geq \nu_B(e) \), then A is an intuitionistic fuzzy normal subring of \(R_1 \).

(ii) if \(\mu_B(x) \leq \mu_A(e) \) and \(\nu_B(x) \geq \nu_A(e) \), then B is an intuitionistic fuzzy normal subring of \(R_2 \).

(iii) either A is an intuitionistic fuzzy normal subring of \(R_1 \) or B is an intuitionistic fuzzy normal subring of \(R_2 \).

Proof:
Let \(A \times B \) be an intuitionistic fuzzy normal subring of \(R_1 \times R_2 \) and \(x, y \in R_1 \) and \(e' \in R_2 \).
Then \((x, e') \) and \((y, e') \) are in \(R_1 \times R_2 \).
Clearly, \(A \times B \) is an intuitionistic fuzzy subring of \(R_1 \times R_2 \).
Now, using the property that \(\mu_A(x) \leq \mu_B(e) \) and \(\nu_A(x) \geq \nu_B(e) \), for all \(x \) in \(R_1 \),
Clearly, A is an intuitionistic fuzzy subring of \(R_1 \), by Definition 1.4.
Now,
\[
\mu_A(xy) = \min \{ \mu_A(xy), \mu_B(e'e') \} \\
= \mu_{A \times B}(xy, e'e') \\
= \mu_{A \times B}[(x, e')(y, e')] \\
= \mu_{A \times B}[(y, e')(x, e')], \text{ by definition} \\
= \mu_{A \times B}[(yx), (e'e')] \\
= \mu_A(yx), \text{ by definition} \\
\]
Therefore,
\[
\mu_A(xy) = \mu_A(yx), \text{ for all } x, y \in R.
\]
And
\[
\nu_A(xy) = \max \{ \nu_A(xy), \nu_B(e'e') \} \\
= \nu_{A \times B}((xy), (e'e')) \\
= \nu_{A \times B}[(x, e')(y, e')] \\
= \nu_{A \times B}[(y, e')(x, e')], \text{ by definition} \\
= \nu_{A \times B}[(yx), (e'e')] \\
= \max \{ \nu_A(yx), \nu_B(e'e') \} \\
= \nu_A(yx).
\]
Therefore,
\[
\nu_A(xy) = \nu_A(yx), \text{ for all } x, y \in R.
\]
Hence A is an intuitionistic fuzzy normal subring of \(R_1 \).
Thus (i) is proved.
Now, using the property that \(\mu_B(x) \leq \mu_A(e) \) and \(\nu_B(x) \geq \nu_A(e) \), for all \(x \) in \(R_2 \), and let \(x, y \in R_2 \) and \(e \in R_1 \).
Then \((e, x) \) and \((e, y) \) are in \(R_1 \times R_2 \).
Clearly, B is an intuitionistic fuzzy subring of \(R_2 \), by definition 1.4.
Now,
\[
\mu_B(xy) = \min\{ \mu_B(xy), \mu_A(ey) \}
\]
\[
= \min\{ \mu_A(ey), \mu_B(xy) \}
\]
\[
= \mu_{AXB}(ee, xy)
\]
\[
= \mu_{AXB}(e, x)(e, y)
\]
\[
= \mu_{AXB}(e, y)(e, x), \text{ by definition}
\]
\[
= \mu_{AXB}(ee, yx)
\]
\[
= \mu_B(yx).
\]
Therefore,
\[
\mu_B(xy) = \mu_B(yx), \text{ for all } x, y \in R.
\]
And
\[
\nu_B(xy) = \max\{ \nu_B(xy), \nu_A(ey) \}
\]
\[
= \max\{ \nu_A(ey), \nu_B(xy) \}
\]
\[
= \nu_{AXB}(ee, xy)
\]
\[
= \nu_{AXB}(e, x)(e, y)
\]
\[
= \nu_{AXB}(e, y)(e, x), \text{ by definition}
\]
\[
= \nu_{AXB}(ee, yx)
\]
\[
= \nu_B(yx).
\]
Therefore,
\[
\nu_B(xy) = \nu_B(yx), \text{ for all } x, y \in R.
\]
Hence B is an intuitionistic fuzzy normal subring of R_2.

Thus (ii) is proved.

(iii) is clear

2.3 Theorem:

If A is an intuitionistic fuzzy normal subring of a ring R, then \(\Box A \) is an intuitionistic fuzzy normal subring of a ring R.

Proof:

Let \(\Box A = B = \{ (x, \mu_B(x), \nu_B(x) \} \).

Clearly, \(\Box A \) is an intuitionistic fuzzy subring of a ring R, since A is an intuitionistic fuzzy subring of a ring R.

Let \(x, y \in R \).

Then, clearly
\[
\mu_B(x + y) = \mu_B(y + x) \quad \text{and} \quad \mu_B(xy) = \mu_B(yx).
\]
And also, \(\mu_A(x + y) = \mu_A(y + x) \)

which implies that
\[
1 - \nu_B(x + y) = 1 - \nu_B(y + x).
\]
That is,
\[
\nu_B(x + y) = \nu_B(y + x) \quad \text{and} \quad \mu_A(xy) = \mu_A(yx)
\]

which implies that \(1 - \nu_B(xy) = 1 - \nu_B(yx) \).
That is, \(\nu_B(x y) = \nu_B(y x) \).
Hence \(B = \Diamond A \) is an intuitionistic fuzzy normal subring of a ring \(R \).

2.4 Theorem:

If \(A \) is an intuitionistic fuzzy normal subring of a ring \(R \), then \(\Diamond A \) is an
intuitionistic fuzzy normal subring of a ring \(R \).

Proof:

Let \(\Diamond A = B = \{(x, \mu_B(x), \nu_B(x)\} \).
Clearly, \(B \) is an intuitionistic fuzzy subring of a ring \(R \), since \(A \) is an
intuitionistic fuzzy subring of a ring \(R \).
Let \(x, y \in R \).
Then, clearly,
\[\nu_B(x + y) = \nu_B(y + x) \quad \text{and} \quad \nu_B(xy) = \nu_B(yx) \]
Now, \(\nu_A(x + y) = \nu_A(y + x) \)
which implies that \(1 - \mu_B(x + y) = 1 - \mu_B(y + x) \).
That is, \(\mu_B(x + y) = \mu_B(y + x) \)
and \(\nu_A(xy) = \nu_A(yx) \)
which implies that \(1 - \mu_B(xy) = 1 - \mu_B(yx) \).
That is, \(\mu_B(xy) = \mu_B(yx) \).
Hence \(B = \Diamond A \) is an intuitionistic fuzzy normal subring of a ring \(R \).

REFERENCES

mathematics, 37(2005), 61-76.

87-96.

[3] PALANIAPPAN.N & ARJUNAN.K., VEERAMANI.V The homomorphism, anti-
homomorphism of an intuitionistic fuzzy normal subrings, ACTA CIENCIA

[4] RAJESH KUMAR, Fuzzy irreducible ideals in rings, Fuzzy sets and systems, 42,

Received: December, 2009