1 Introduction

Let \hat{Q} be a bounded open set of $\mathbb{R}^n_x \times (0, T)$, $T > 0$. We define

$$\Omega_s = \hat{Q} \cap \{t = s; 0 \leq s \leq T\}$$

and suppose that the sets Ω_s are open for all s. We represent by Γ_s the smooth boundary of Ω_s. The lateral boundary of \hat{Q} is given by

$$\hat{\Sigma} = \bigcup_{0 < s < T} \Gamma_s \times \{s\}$$

The boundary of \hat{Q} is defined by

$$\partial \hat{Q} = \Omega_0 \cup \hat{\Sigma} \cup \Omega_T$$

where, Ω_0 is bounded open set of \mathbb{R}^n_x with $x = (x_1, x_2, \ldots, x_n)$. Let Ω be a bounded open set of \mathbb{R}^n_x and denote by $Q = \Omega \times (0, T)$ a cylinder such that $\hat{Q} \subset Q$. Let Γ be the boundary of Ω also smooth and let $\Sigma = \Gamma \times (0, T)$ the lateral boundary of the cylinder Q. Let Ω be a bounded open set in \mathbb{R}^n with boundary Γ smooth and let T is a positive real number.
In the set \widehat{Q} we will consider the following problem:

$$
\begin{aligned}
|u'| + Au &= f \\
u(0) &= u_0
\end{aligned}
$$

(1)

where, A is the pseudo Laplacian operator.

The problem (1) in cylinder domain was solved in J.L.Lions [2] by Compactness Method. Also in J.L.Lions [2] was given by other solution of this problem utilizing the Monotony Method, due to M.Visik [7].

An problem in manifolds with this operator was study by authors, to appear [5].

In this work we will analyze the problem (1) in the Non Cylindric Domain \widehat{Q}.

We will use the Penazation Method, idealized by J.L.Lions and the Monotony Method.

The proof consist in transform the problem (1) in a problem in the cylinder Q, solve and then restrict the problem to the non cylinder domain \widehat{Q}.

2 Notations, Hypotheses

All derivates are in the distribution sense. By $\mathcal{D}(\Omega)$ we will denote the space of the testes functions in Ω.

We will represent by $W^{1,p}_0(\Omega)$ the closed of $\mathcal{D}(\Omega)$ in $W^{1,p}(\Omega)$. The dual space of $W^{1,p}_0(\Omega)$ is denote by $W^{-1,p'}(\Omega)$, where p' denote the conjugate exponent of p, that is, $\frac{1}{p} + \frac{1}{p'} = 1$.

Let A the pseudo Laplacian operator, that is,

$$
A : W^{1,p}_0(\Omega) \to W^{-1,p'}(\Omega)
$$

tal que

$$
A(w) = -\sum_{i=1}^{n} \frac{\partial}{\partial x_i} \left(|\frac{\partial w}{\partial x_i}|^{p-2} \frac{\partial w}{\partial x_i} \right), \; 2 < p < \infty.
$$

We remind that the operator A has the followings proprieties:

- A is bounded, that is, carry bounded in bounded;
- A monotonic, hemicontinuous, $\langle A(u), u \rangle = \|u\|_{W^{1,p}_0}^p$, coercive.

We go assume the following hypotheses:

(H1) The family open $\{\Omega_s\}_{0 < s < T}$ is increasing in the following sense.

If $t_1 \leq t_2$ then $\text{proj}_{\mathbb{R}^n} \Omega_{t_1} \subseteq \text{proj}_{\mathbb{R}^n} \Omega_{t_2}$

(H2) Regularity of the boundary of \widehat{Q}

If $v \in W^{1,p}_0(\Omega)$ and $v = 0$ q.s in $\Omega - \Omega_t$ then $v \in W^{1,p}_0(\Omega_t)$.
Finally, we consider the function
\[M(x, t) = \begin{cases} 1, & \text{in } Q - \hat{Q} \cup \{\Omega_0 \times \{0\}\} \\ 0, & \text{in } \hat{Q} \cup \Omega_0 \times \{0\} \end{cases} \]
and \(\beta(u) = \frac{1}{\epsilon} M(x, t) u, \forall \epsilon > 0. \)
We note that \(M \in L^\infty(Q). \)

Definition 2.1 The function \(u : \hat{Q} \to \mathbb{R} \) is a weak solution of the problem (1) if \(u \in L^p(0, T; W^{1, p}_0(\Omega_t)) \) and
\[
\frac{d}{dt}(u(t), v) + \langle Au(t), v \rangle = (f(t), v) \text{ in } D'(\Omega_t),
\]
for all \(v \in W^{1, p}_0(\Omega_t) \)
\(u(0) = u_0 \)

3 Main Result

In this section we will solve the follow result

Theorem 1 Given \(f \in L^p(0, T; W^{-1, p'}(\Omega_t)) \) and \(u_0 \in W^{1, p}_0(\Omega_t) \), then there exists a unique solution of the problem (1) in the sense of the definition 2.1.

The idea of proof consist in transform the problem (1) in a equivalent problem in the cylinder utilizing the penalization method.

3.1 Penalized Problem

Given \(\epsilon > 0 \) to each function \(u_\epsilon : Q \to \mathbb{R} \) solution of the problem:
\[
\begin{align*}
 u_\epsilon' + Au_\epsilon + \frac{1}{\epsilon} Mu_\epsilon &= \tilde{f} \text{ in } Q \\
 u_\epsilon &= 0 \text{ on } \Sigma \\
 u_\epsilon(x, 0) &= \tilde{u}_0 \text{ in } \Omega
\end{align*}
\]
where
\[
\tilde{f}(x, t) = \begin{cases} f(x, t) & \text{in } \hat{Q} \\ 0 & \text{in } Q - \hat{Q} \end{cases}
\]
and
\[
\tilde{u}(x, 0) = \begin{cases} u_0 & \text{in } \Omega_0 \\ 0 & \text{in } \Omega - \Omega_0 \end{cases}
\]
where \(\tilde{u}_0 \in W^{1, p}_0(\Omega) \).
From separability of \(V = W^{1, p}_0(\Omega) \) there exists an hilbetian’s base \((w_\nu)_\nu \subset V. \)
Let \(V_m = [w_1, \ldots, w_m] \) be the subspace of \(V \) generate by \(m \) first vectors of \((w_\nu)_\nu. \)
3.2 Approximated Problem

Consider \(u_{em}(t) \in V_m \) such that:

\[
\begin{align*}
|u_{em}(t) & \in V_m \\
(u'_{em}(t), v) + (Au_{em}(t), v) + \\
\frac{1}{\varepsilon} (Mu_{em}(t), v) & = (\tilde{f}(t), v), \forall v \in V_m \\
\end{align*}
\]

(4)

Hence, the system (4) has a local solution on the interval \([0, t_m)\), with \(t_m < T\). This solution can be extended to the whole interval \([0, T]\) as consequence of the priori estimates that shall be proved in the next step.

3.3 Estimates I

Considering \(v = u_{em}(t) \) in (4) and using the proprieties of the operator \(A \) we have the existence of a subsequence \((u_{\nu}) \subset (u_{em})\) such that:

\[
\begin{align*}
\frac{1}{\varepsilon} (Mu_{\nu}(t), v) & \rightarrow \zeta in L^2(\Omega) \\
u_{\nu} & \rightarrow u_{\varepsilon} in L^\infty(0, T, L^2(\Omega)) \\
u_{\nu} & \rightarrow u_{\varepsilon} in L^p(0, T, W^{1,p}_0(\Omega)) \\
Au_{\nu} & \rightarrow \chi in L^{p'}(0, T, W^{-1,p'}(\Omega)) \\
\end{align*}
\]

(5) (6) (7) (8)

Writing the approximated equation with \(\nu \), multiplying by \(\varphi \in D(0, T) \), integrating from 0 to \(T \) and integrating by parts we obtain:

\[
\begin{align*}
\int_0^T (u_{\nu}(t), \varphi(t))dt + \int_0^T (Au_{\nu}(t), \varphi(t))dt \\
+ \int_0^T \frac{1}{\varepsilon} (Mu_{\nu}(t), \varphi(t))dt & = \int_0^T (\tilde{f}(t), \varphi(t))dt, \\
\forall v \in V_m. \\
\end{align*}
\]

(9)

3.4 Convergence of the term: \(\frac{1}{\varepsilon} (M(t)u_{\nu}(t), v) \)

As \(u_{\nu} \) is bounded in \(L^\infty(0, T; L^2(\Omega)) \hookrightarrow L^2(0, T; L^2(\Omega)) = L^2(Q) \), hence \(u_{\nu} \) is bounded in \(L^2(Q) \). Therefore,

\[
u_{\nu} \rightarrow u_{\varepsilon} in L^2(Q)
\]

(10)

But, \(M\varphi \in L^2(Q) \), because \(M \in L^\infty(Q) \). Therefore \((u_{\nu}, M\phi) \rightarrow (u_{\varepsilon}, M\phi), \forall \phi \in L^2(Q)\).
Taking to the limit in (9) when \(\nu \to \infty \), using the convergence obtained and using the density of \(V_m \) in \(V \) and we have:
\[
\frac{d}{dt}(u_\epsilon(t), v) + (\chi(t), v) + \frac{1}{\epsilon}(M u_\epsilon(t), v) = (\tilde{f}(t), v), \quad \forall \, v \in V, \text{ in the sense of } D'(0, T).
\] (11)

To show that, \(\chi(t) = A(u_\epsilon(t)) \), we used the your monotony and hemicontinuity. While that the verification of \(u_\epsilon(0) = \tilde{u}_0 \) and \(u_{\epsilon m}(T) \to u_\epsilon(T) \) is done form standard.

Thus, by Teman’s Lemma [6] we have
\[
\frac{d}{dt}(u_\epsilon, v) + (A(u_\epsilon), v) + \frac{1}{\epsilon}(M u_\epsilon, v) = (\tilde{f}(t), v), \quad \forall \, v \in V, \text{ in the sense of } D'(0, T).
\] (12)

Multiplying (12) by \(v = u_\epsilon \), we have, as in the estimates I, when \(\epsilon \to 0 \)
\[
u \to \infty, \text{ using the convergence obtained and using the density of } V_m \in V \text{ and we have:}
\[
\frac{d}{dt}(u_\epsilon(t), v) + (\chi(t), v) + \frac{1}{\epsilon}(M u_\epsilon(t), v) = (\tilde{f}(t), v), \quad \forall \, v \in V, \text{ in the sense of } D'(0, T).
\] (11)

To show that, \(\chi(t) = A(u_\epsilon(t)) \), we used the your monotony and hemicontinuity. While that the verification of \(u_\epsilon(0) = \tilde{u}_0 \) and \(u_{\epsilon m}(T) \to u_\epsilon(T) \) is done form standard.

Thus, by Teman’s Lemma [6] we have
\[
u \to \infty, \text{ using the convergence obtained and using the density of } V_m \in V \text{ and we have:}
\] (11)

Multiplying (12) by \(v = u_\epsilon \), we have, as in the estimates I, when \(\epsilon \to 0 \)
\[
u \to \infty, \text{ using the convergence obtained and using the density of } V_m \in V \text{ and we have:}
\] (11)

From estimates, we obtain, when \(\epsilon \to 0 \), \(M u_\epsilon \to 0 \) in \(L^2(0, T, L^2(\Omega)) \), where \(Mw = 0 \) a.s. in \(Q \). Therefore
\[
\frac{d}{dt}(u_\epsilon, v) + (A(u_\epsilon), v) + \frac{1}{\epsilon}(M u_\epsilon, v) = (\tilde{f}(t), v), \quad \forall \, v \in V, \text{ in the sense of } D'(0, T).
\] (12)

Multiplying (12) by \(v = u_\epsilon \), we have, as in the estimates I, when \(\epsilon \to 0 \)
\[
u \to \infty, \text{ using the convergence obtained and using the density of } V_m \in V \text{ and we have:}
\] (11)

From estimates, we obtain, when \(\epsilon \to 0 \), \(M u_\epsilon \to 0 \) in \(L^2(0, T, L^2(\Omega)) \), where \(Mw = 0 \) a.s. in \(Q \). Therefore
\[
u \to \infty, \text{ using the convergence obtained and using the density of } V_m \in V \text{ and we have:}
\] (11)

De (14) e (16) and of the hypotheses \((H2)\), if \(u \) to design the restriction of \(w \) the \(\hat{Q} \), we have
\[
u \to \infty, \text{ using the convergence obtained and using the density of } V_m \in V \text{ and we have:}
\] (11)

3.5 Restriction the \(\hat{Q} \)

The restriction of the equation (12) to \(\hat{Q} \), is
\[
u \to \infty, \text{ using the convergence obtained and using the density of } V_m \in V \text{ and we have:}
\] (12)

where \(\hat{u}_\epsilon \) represent the restriction of \(u_\epsilon \) a \(\hat{Q} \)

As \(\hat{u}_\epsilon \in C_s([0, T], W_{0}^{1,p}(\Omega_t)) \) we have that the application \(t \to (\hat{u}_\epsilon(t), y) \) is continuous for \(y \in W^{-1,p'}(\Omega_t) \), hence multiplying the equation (17) by \(\theta \in D(0, T) \), integrating from 0 to \(T \) an integrating by parts we obtain
\[
u \to \infty, \text{ using the convergence obtained and using the density of } V_m \in V \text{ and we have:}
\] (12)

where \(\hat{u}_\epsilon \) represent the restriction of \(u_\epsilon \) a \(\hat{Q} \)

As \(\hat{u}_\epsilon \in C_s([0, T], W_{0}^{1,p}(\Omega_t)) \) we have that the application \(t \to (\hat{u}_\epsilon(t), y) \) is continuous for \(y \in W^{-1,p'}(\Omega_t) \), hence multiplying the equation (17) by \(\theta \in D(0, T) \), integrating from 0 to \(T \) an integrating by parts we obtain
\[
u \to \infty, \text{ using the convergence obtained and using the density of } V_m \in V \text{ and we have:}
\] (12)

where \(\hat{u}_\epsilon \) represent the restriction of \(u_\epsilon \) a \(\hat{Q} \)

As \(\hat{u}_\epsilon \in C_s([0, T], W_{0}^{1,p}(\Omega_t)) \) we have that the application \(t \to (\hat{u}_\epsilon(t), y) \) is continuous for \(y \in W^{-1,p'}(\Omega_t) \), hence multiplying the equation (17) by \(\theta \in D(0, T) \), integrating from 0 to \(T \) an integrating by parts we obtain
\[
u \to \infty, \text{ using the convergence obtained and using the density of } V_m \in V \text{ and we have:}
\] (12)
As \(u, \tilde{u}_\epsilon \) are the restrictions of \(w, u_\epsilon \) respectively, we have of (13) and (14), when \(\epsilon \to 0 \)
\[
\tilde{u}_\epsilon \rightharpoonup u \text{ in } L^\infty(0,T, L^2(\Omega_t))
\]
\[
\hat{u}_\epsilon \to u \text{ in } L^p(0,T, W^1_0(\Omega_t))
\]
\[
A\hat{u}_\epsilon \to \xi \text{ in } L^p(0,T, W^{-1,p'}(\Omega_t))
\]
\[
\hat{u}_\epsilon(T) \to \beta \text{ in } L^2(\Omega_t)
\]

Analogously, as in the first part of the proof, show that \(\beta = u(T) \text{ and } \xi = Au \).

Taking to the limit in (18) when \(\epsilon \to 0 \) and using the convergence obtained we have
\[
\frac{d}{dt}(u(t), v) + (A(u(t)), v) = (f(t), v),
\]
\[\forall v \in W^1_0(\Omega_t) \text{ em } \mathcal{D}'(0,T).\]

As \(u \in C^0([0,T], W^{-1,p'}(\Omega)) \) make sense calculate \(u(0) \).

Being by first part of the proof \(u_\epsilon(0) = \tilde{u}_0 \) we have that \(\hat{u}_\epsilon(0) = u_0 \) where we conclude \(u(0) = u_0 \).

For to show the uniqueness is used the monotony of the pseudo Laplacian operator \(A \). What that conclude the proof of the Theorem 1.

3.6 Asymptotic Behavior

The solution from Theorem 1 can be extended the interval \([0, \infty)\), hence we make sense to think in decay.

From (17) with the \(v = \tilde{u}_\epsilon \), the energy of the solution associated to the restrict system (3) to \(\hat{Q} \) is given by \(E_\epsilon(t) = \frac{1}{2}|\tilde{u}_\epsilon|^2 \).

Taking the duality (3)1 restrict to \(\hat{Q} \) com \(\tilde{u}_\epsilon \) we have
\[
\frac{1}{2} \frac{d}{dt}|\tilde{u}_\epsilon|^2 + \|\hat{u}_\epsilon\|^p = 0
\]

where we obtain \(\frac{1}{2} \frac{d}{dt}|\tilde{u}_\epsilon|^2 \leq 0 \), that is, \(\frac{d}{dt}E_\epsilon(t) \leq 0, \forall t \geq 0 \).

Therefore, \(E_\epsilon \) is a nonnegative increasing function.

Integrating (23) de 0 a \(t \) we have \(E_\epsilon(t) + \int_0^t \|\hat{u}_\epsilon\|_V^p = E_\epsilon(0) \). Where, we obtain
\[
E_\epsilon(t) - E_\epsilon(t + 1) = \int_0^t \|\hat{u}_\epsilon(s)\|_V^p ds.
\]

Using the immersion of \(W^1_0(\Omega_t) \) in \(L^2(\Omega_t) \) we obtain
\[
\int_t^{t+1} |\tilde{u}_\epsilon|^2 ds \leq c_1 \int_t^{t+1} \|\hat{u}_\epsilon\|_V^p.
\]
Thus
\[\int_t^{t+1} |\hat{u}_\epsilon|^2 ds \leq C[E_\epsilon(t) - E_\epsilon(t + 1)] = F^2(t) \] (24)

We consider now the subintervals \((t, t + \frac{1}{4})\) and \((t + \frac{3}{4}, t + 1)\) of \((t, t + 1)\). Using the Medium Value Theorem for integrals, we have that there exists \(t_1 \in (t, t + \frac{1}{4})\) such that
\[\frac{1}{4} |\hat{u}_\epsilon| = \int_t^{t+\frac{1}{4}} |\hat{u}_\epsilon|^2 ds \leq \int_t^{t+1} |\hat{u}_\epsilon|^2 ds \leq F^2(t) \] (25)

Where, we obtain \(|\hat{u}_\epsilon(t_1)| \leq 2F^2(t)\).

Analogously we obtain \(t_2 \in (t + \frac{3}{4}, t + 1)\) such that \(|\hat{u}_\epsilon(t_2)| \leq 2F^2(t)\).

Integrating the energy in \([t_1, t_2]\) and using the Medium Value Theorem for integrals, we have that there exists \(t^* \in (t_1, t_2)\) such that
\[(t_2 - t_1)E_\epsilon(t^*) = \int_{t_1}^{t_2} E_\epsilon(s) ds \leq F^2(t) \]

As \(t_2 - t_1 > \frac{1}{2}\) we have that: \(E_\epsilon(t^*) \leq 2F^2(t)\).

Let \(\tau_1, \tau_2 \in [t, t + 1]\) with \(\tau_1 < \tau_2\) and \(\tau_1 = t^*\). We have
\[E_\epsilon(\tau_2) \leq E_\epsilon(t^*) + \int_t^{t+1} \|\hat{u}_\epsilon\|^p ds, \ \forall \tau_2 \in [t, t + 1] \]

Where, we obtain
\[\sup_{t \leq s \leq t+1} E_\epsilon(s) \leq E_\epsilon(t^*) + \int_t^{t+1} \|\hat{u}_\epsilon(s)\|^p ds \]

Thus and noting that
\[\int_t^{t+1} \|\hat{u}_\epsilon\|^p ds \leq \frac{1}{C} F^2(t), \]
we obtain
\[\sup_{t \leq s \leq t+1} E_\epsilon(s) \leq C[E_\epsilon(t) - E_\epsilon(t + 1)] \]

Therefore, by Nakao’s Lemma [3], we have
\[E_\epsilon(t) \leq Ce^{-\delta t}, \ \forall \epsilon > 0. \]

We have that \(\hat{u}_\epsilon(t) \to u(t)\) in \(L^2(\Omega_t)\), when \(\epsilon \to 0\). Using this convergence and taking to the inferior limit in the inequality above, when \(\epsilon \to 0\), we obtain:
\[E(t) \leq Ce^{-\delta t}. \]

What that characterize the asymptotic behavior
References

Received: March, 2009