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Abstract

Different definitions of fractional derivatives and fractional Integrals
(Differintegrals) are considered. By means of them explicit formula
and graphs of some special functions are derived. Also we reviw some
applications of the theory of fractional calculus.
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1 Introduction

Fractional calculus is a field of mathematics study that qrows out of the tra-
ditional definitions of calculus integral and derivative operators in much the
same way fractional exponents is an outgrowth of exponents with integer value.

The concept of fractional calculus( fractional derivatives and fractional in-
tegral) is not new. In 1695 L’Hospital asked the question as to the meaning
of dny/dxn if n = 1/2; that is ” what if n is fractional?”. Leibniz replied that
”d1/2x will be equal to x

√
dx : x”.

It is generally known that integer-order derivatives and integrals have clear
physical and geometric interpretations. However, in case of fractional-order
integration and differentiation, which represent a rapidly qrowing field both in
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theory and in applications to real world problems, it is not so. Since the appear-
ance of the idea of differentiation and integration of arbitrary (not necessary
integer) order there was not any acceptable geometric and physical interpre-
tation of these operations for more than 300 year. In [11], it is shown that
geometric interpretation of fractional integration is ”‘Shadows on the walls”’
and its Physical interpretation is ”‘Shadows of the past”’.

In the last years has found use in studies of viscoelastic materials, as well as
in many fields of science and engineering including fluid flow, rheology, diffusive
transport, electerical networks, electromagnetic theory and probability.

In this paper we consider different definitions of fractional derivatives and
integrals (differintegrals). For some elementary functions, explicit formula of
fractional drevative and integral are presented. Also we present some applica-
tions of fractional calculus in science and engineering.

2 Different Definitions

In this section we consider different definitions of fractional calculus.

1. L. Euler(1730):

Euler generalized the formula

dnxm

dxn
= m(m− 1) · · · (m− n + 1)xm−n

by using of the following property of Gamma function,

Γ(m+ 1) = m(m− 1) · · · (m− n+ 1)Γ(m− n+ 1)

to obtain

dnxm

dxn
=

Γ(m+ 1)

Γ(m− n+ 1)
xm−n.

Gamma function is defined as follows.

Γ(z) =

∫ ∞

0

e−ttz−1dt, Re(z) > 0

2. J. B. J. Fourier (1820 - 1822):

By means of integral representation
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f(x) =
1

2π

∫ ∞

−∞
f(z)dz

∫ ∞

−∞
cos(px− pz)dp

he wrote

dnf(x)

dxn
=

1

2π

∫ ∞

−∞
f(z)dz

∫ ∞

−∞
cos(px− pz + n

π

2
)dp,

3. N. H. Abel (1823- 1826):

Abel considered the integral representation

∫ x

0

s′(η)dη
(x− η)α

= ψ(x) for ar-

bitrary α and then wrote

s(x) =
1

Γ(1 − α)

d−αψ(x)

dx−α
.

4. J. Lioville (1832 - 1855):

I. In his first definition, according to exponential representation of a
function f(x) =

∑∞
n=0 cne

anx, he generalized the formula dmeax

dxn =
ameax as

dνf(x)

dxν
=

∞∑
n=0

cna
ν
ne

anx

II. Second type of his definition was Fractional Integral

∫ μ

Φ(x)dxμ =
1

(−1)μΓ(μ)

∫ ∞

0

Φ(x+ α)αμ−1dα

∫ μ

Φ(x)dxμ =
1

Γ(μ)

∫ ∞

0

Φ(x− α)αμ−1dα

By substituting of τ = x+ α and τ = x− α in the above formulas
respectively, he obtained

∫ μ

Φ(x)dxμ =
1

(−1)μΓ(μ)

∫ ∞

x

(τ − x)μ−1Φ(τ)dτ

∫ μ

Φ(x)dxμ =
1

Γ(μ)

∫ x

−∞
(x− τ)μ−1Φ(τ)dτ.
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III. Third definition, includes Fractional derivative,

dμF (x)

dxμ
=

(−1)μ

hμ

(
F (x)

μ

1
F (x+ h) + +

μ(μ− 1)

1 · 2 F (x+ 2h) − · · ·
)

dμF (x)

dxμ
=

1

hμ

(
F (x)

μ

1
F (x− h) + +

μ(μ− 1)

1 · 2 F (x− 2h) − · · ·
)
.

5. G. F. B. Riemann (1847 - 1876):

His definition of Fractional Integral is

D−νf(x) =
1

Γ(ν)

∫ x

c

(x− t)ν−1f(t)dt+ ψ(t)

6. N. Ya. Sonin (1869), A. V. Letnikov (1872), H. Laurent (1884),
N. Nekrasove (1888), K. Nishimoto (1987-):

They considered to the Cauchy Integral formula

f (n)(z) =
n!

2πi

∫
c

f(t)

(t− z)n+1
dt

and substituted n by ν to obtain

Dνf(z) =
Γ(ν + 1)

2πi

∫ x+

c

f(t)

(t− z)ν+1
dt.

7. Riemann-Liouvill definition:

The popular definition of fractional calculus is this which shows joining
of two previous definitions.

aD
α
t f(t) =

1

Γ(n− α)

(
d

dt

)n ∫ t

a

f(τ)dτ

(t− τ)α−n+1

(n− 1 ≤ α < n)

8. Grünwald-Letnikove:

This is another joined definition which is sometimes useful.

aD
α
t f(t) = lim

h→0
h−α

[ t−a
h ]∑

j=0

(−1)j

(
α

j

)
f(t− jh)
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9. M. Caputo (1967):

The second popular definition is

C
a D

α
t f(t) =

1

Γ(α− n)

∫ t

a

f (n)(τ)dτ

(t− τ)α+1−n
, (n− 1 ≤ α < n)

10. K. S. Miller, B. Ross (1993):

They used differential operator D as

Dᾱf(t) = Dα1Dα2 · · ·Dαnf(t), ᾱ = (α1, α2, · · · , αn)

which Dαi is Riemann-Liouvill or Caputo definitions.

3 Fractional derivative of Some special Func-

tions

In this section we give more explicit formulas of fractional derivative and in-
tegral of some special functions and then consider to there graph.

1. Unit function: For f(x) = 1 we have
dq1

dxq
=

x−q

Γ(1 − q)
for all q
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2. Identity function: For f(x) = x we have
dqx

dxq
=

x1−q

Γ(2 − q)

3. Exponential function: Fractional differintegral of the function f(x) =

ex is
dqe±x

dxq
=

∞∑
k=0

xk−q

Γ(k − q + 1)

0

1

2

3

4

5

6

7

8

9

10

11

12

13

14

0 1 2 3

q = 1
2

q = −

1
2

q = 3
2

q = 3
2

4. Sin function: If f(x) = sinx then
dq sin(x)

dxq
= sin

(
x+

qπ

2

)

1

−1

1 2 3 4 5 6−1−2−3−4−5−6−7

q = 1
2 q = −

1
2 q = 3

2q = −

3
2
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5. Cosin function: If f(x) = cosx then
dq cos(x)

dxq
= cos

(
x+

qπ

2

)

1

−1

1 2 3 4 5 6−1−2−3−4−5−6−7

q = 1
2 q = −

1
2 q = 3

2q = −

3
2

4 Applications of Fractional Calculus

The basic mathematical ideas of fractional calculus (integral and differential
operations of noninteger order)were developed long ago by the mathematicians
Leibniz (1695), Liouville (1834), Riemann (1892), and others and brought to
the attention of the engineering world by Oliver Heaviside in the 1890s, it
was not until 1974 that the first book on the topic was published by Oldham
and Spanier. Recent monographs and symposia proceedings have highlighted
the application of fractional calculus in physics, continuum mechanics, signal
processing, and electromagnetics. Here we state some of applications.

1. First one
It may be important to point out that the first application of fractional
calculus was made by Abel(1802-1829) in the solution of an integral
equation that arises in the formulation of the tautochronous problem.
This problem deals with the determination of the shape of a frictionless
plane curve through the origin in a vertical plane along which a particle
of mass m can fall in a time that is independent of the starting position.
If the sliding time is constant T , then the Abel integral equation(1823)
is √

2gT =

∫ η

0

(η − y)−
1
2 f ′(y)dy,

where g is the acceleration due to gravity, (ξ, η) is the initial position
and s = f(y) is the equation of the sliding curve. It turns out that this
equation is equivalent to the fractional integral equation

T
√

2g = Γ(
1

2
)0D

− 1
2

η f ′(η)

Indeed, Heaviside gave an interpretation of
√
p = D

1
2 so that 0D

1
2
t 1 =

1√
πt

.
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2. Electric transmission lines
During the last decades of the nineteenth century, Heaviside success-
fully developed his operational calculus without rigorous mathematical
arguments. In 1892 he introduced the idea of fractional derivatives in
his study of electric transmission lines. Based on the symbolic operator
form solution of heat equation due to Gregory(1846), Heaviside intro-
duced the letter p for the differential operator d

dt
and gave the solution

of the diffusion equation
∂2u

∂x2
= a2p

for the temperature distribution u(x, t) in the symbolic form

u(x, t) = A exp(ax
√
p) +B exp(−ax√p)

in which p ≡ d
dx

was treated as constant, where a, A and B are also
constant.

3. Ultrasonic wave propagation in human cancellous bone
N. Sebaa, Z. E. A. Fellah, W. Lauriks, C. Depollier[12]

Fractional calculus is used to describe the viscous interactions between
fluid and solid structure. Reflection and transmission scattering opera-
tors are derived for a slab of cancellous bone in the elastic frame using
Blot’s theory. Experimental results are compared with theoretical pre-
dictions for slow and fast waves transmitted through human cancellous
bone samples

4. Modeling of speech signals using fractional calculus
Assaleh, K.; Ahmad, W.M.[1]

In this paper, a novel approach for speech signal modeling using frac-
tional calculus is presented. This approach is contrasted with the cel-
ebrated Linear Predictive Coding (LPC) approach which is based on
integer order models. It is demonstrated via numerical simulations that
by using a few integrals of fractional orders as basis functions, the speech
signal can be modeled accurately.

5. Modeling the Cardiac Tissue Electrode Interface Using Frac-
tional Calculus
R.L. Magin [7]

The tissue electrode interface is common to all forms of biopotential
recording (e.g., ECG, EMG, EEG) and functional electrical stimulation
(e.g., pacemaker, cochlear implant, deep brain stimulation). Conven-
tional lumped element circuit models of electrodes can be extended by
generalization of the order of differentiation through modification of the
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defining current-voltage relationships. Such fractional order models pro-
vide an improved description of observed bioelectrode behaviour, but re-
cent experimental studies of cardiac tissue suggest that additional math-
ematical tools may be needed to describe this complex system.

6. Application of Fractional Calculus to the sound Waves Propa-
gation in Rigid Porous Materials
Z. E. A. Fellah, C.Depollier[3]

The observation that the asymptotic expressions of stiffness and damp-
ing in porous materials are proportional to fractional powers of frequency
suggests the fact that time derivatives of fractional order might describe
the behaviour of sound waves in this kind of materials, including relax-
ation and frequency dependence.

7. Using Fractional Calculus for Lateral and Longitudinal Control
of Autonomous Vehicles
J.I. Suárez , B.M. Vinagre , A.J. Calderón , C.A. Monje and Y.Q.
Chen[14]

Here it is presented the use of Fractional Order Controllers (FOC) applied
to the path-tracking problem in an autonomous electric vehicle. A lateral
dynamic model of a industrial vehicle has been taken into account to im-
plement conventional and Fractional Order Controllers. Several control
schemes with these controllers have been simulated and compared.

8. Application of fractional calculus in the theory of viscoelasticity
E. Soczkiewicz[13]

The advantage of the method of fractional derivatives in theory of vis-
coelasticity is that it affords possibilities for obtaining constitutive equa-
tions for elastic complex modulus of viscoelastic materials with only few
experimentally determined parameters. Also the fractional derivative
method has been used in studies of the complex moduli and impedances
for various models of viscoelastic substances.

9. Fractional differentiation for edge detection
B. Mathieu, P. Melchior, A. Oustaloup, Ch. Ceyral[9]

In image processing, edge detection often makes use of integer-order dif-
ferentiation operators, especially order 1 used by the gradient and order
2 by the Laplacian. This paper demonstrates how introducing an edge
detector based on non-integer (fractional) differentiation can improve the
criterion of thin detection, or detection selectivity in the case of parabolic
luminance transitions, and the criterion of immunity to noise, which can
be interpreted in term of robustness to noise in general.
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10. Wave propagation in viscoelastic horns using a fractional cal-
culus rheology model
Margulies, Timothy[8]

The complex mechanical behavior of materials are characterized by fluid
and solid models with fractional calculus differentials to relate stress and
strain fields. Fractional derivatives have been shown to describe the vis-
coelastic stress from polymer chain theory for molecular solutions. Here
the propagation of infinitesimal waves in one dimensional horns with
a small cross-sectional area change along the longitudinal axis are ex-
amined. In particular, the linear, conical, exponential, and catenoidal
shapes are studied. The wave amplitudes versus frequency are solved
analytically and predicted with mathematical computation. Fractional
rheology data from Bagley are incorporated in the simulations. Classical
elastic and fluid “Webster equations” are recovered in the appropriate
limits. Horns with real materials that employ fractional calculus repre-
sentations can be modeled to examine design trade-offs for engineering
or for scientific application.

11. Application of Fractional Calculus to Fluid Mechanics
Vladimir V. Kulish and José L. Lage[4]

Application of fractional calculus to the solution of time-dependent,
viscous-diffusion fluid mechanics problems are presented. Together with
the Laplace transform method, the application of fractional calculus to
the classical transient viscous-diffusion equation in a semi-infinite space
is shown to yield explicit analytical (fractional) solutions for the shear-
stress and fluid speed anywhere in the domain. Comparing the fractional
results for boundary shear-stress and fluid speed to the existing analytical
results for the first and second Stokes problems, the fractional methodol-
ogy is validated and shown to be much simpler and more powerful than
existing techniques.
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