The Light Curve in Supernova Modeled by a Continuous Radioactive Decay of ^{56}Ni

L. Zaninetti

Dipartimento di Fisica
Università degli Studi di Torino
via P. Giuria 1, 10125 Torino, Italy

Copyright © 2013 L. Zaninetti. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Abstract

The UVOIR bolometric light curves are usually modeled by the radioactive decay. In order to model more precisely the absolute/apparent magnitude versus time relationship the continuous production of radioactive isotopes is introduced. A differential equation of the first order with separable variables is solved.

Keywords: Supernovae, evolution, nuclear physics aspects of, explosive burning in shock fronts

1 Introduction

The production of ^{56}Ni, see [1], in the last phase of the stellar evolution has been predicted by [2, 3, 4]. After this theoretical prediction the radioactive decay was used as an explanation for the observations of the light curve of supernova (SN), see among others [5, 6, 7, 8, 9, 10]. At the same time the decay of ^{56}Ni produces a straight line in the absolute/apparent magnitude versus time relationship of the light curve which does not corresponds to the observations. We briefly recall that such a relationship presents a concavity. In order to explain this discrepancy between theory of decay and astronomical light curve we have developed a simple model for the continuous ^{56}Ni production. In this paper Section 2 derives and solves the differential equation which models the continuous production of ^{56}Ni and Section 3 shows the application of this new model to the light curve of two SNs.
2 The continuous production of radioactive isotope

The decay of a radioactive isotope is modeled by the following equation

\[-dN = \frac{N}{\tau},\]

where \(\tau \) is a constant and the negative sign indicates that \(dN \) is a reduction in the number of nuclei, see [11]. The integration of this differential equation of the first order in which the variables can be separated gives:

\[N(t) = N_0 e^{-\frac{t}{\tau}},\]

where \(N_0 \) is the number of nuclei at \(t = 0 \). The half life is \(T_{1/2} = \ln(2) \tau \). The absolute magnitude version of the previous formula is

\[M = -C \log_{10}(N(t)) = -\frac{t}{\tau} + k,\]

where \(M \) is the absolute luminosity, \(C \) and \(k \) are two constants. This means that we are waiting for a straight line for the absolute magnitude versus time relationship. The continuous production of radioactive nuclei is modeled by the following equation

\[-dN = \frac{N}{\tau} dt - PN^\alpha dt,\]

where \(P \), the production, and \(\alpha \), the exponent, are two adjustable parameters. In this differential equation of the first order the variables can be separated and the solution is

\[N(t) = \frac{1}{\left(P\tau + e^{\frac{\alpha - 1}{\tau} t} N_0 - \alpha + 1 - P\tau\right)^{\frac{1}{\alpha - 1}}},\]

where the initial condition \(N(0) = N_0 \) has been used. The absolute magnitude version of the previous formula is

\[M = -C \log_{10}(N(t)) = \frac{-\ln((P\tau + e^{\frac{\alpha - 1}{\tau} t} N_0 - \alpha + 1) - (P\tau)^{-(\alpha - 1)^{-1}}) + k\ln(2) + k\ln(5)}{\ln(2) + \ln(5)}\]

where \(M \) is the absolute magnitude and \(C \) and \(\alpha \) two constants.
Figure 1: The V light curve of SN 2001el (empty stars) in absolute magnitude, the theoretical curve as given by equation (3) when the radioactive decay of the isotope ^{56}Ni ($\tau = 8.757 \text{ d or } T_{1/2} = 6.07 \text{ d}, k=-18.65$) was considered (full line), and the theoretical curve of the continuous production of the isotope ^{56}Ni ($\tau = 8.757 \text{ d or } T_{1/2} = 6.07 \text{ d}, k=-18.65, P = 10^{-4}, \alpha=0.29$) (dashed line).

3 Astrophysical applications

We plot the decay of the light curve of SN 2001el, which is of type Ia, adopting a distance modulus of 31.65 mag, see [12], the nuclear decay which according to equation (3) is a straight line, and the theoretical curve of the continuous production of radioactivity as represented by equation 6, see Figure 1. Another example is represented by SN 2001ay, the so called "the most slowly declining type Ia supernova", which has distance modulus of 35.55 mag and is of type Ia, see [8]. Figure 2 reports the light curve, the nuclear decay of the isotope ^{56}Ni and the continuous production of the isotope ^{56}Ni.

4 Conclusions

In conclusion the continuous production of ^{56}Ni during the evolution of a SN is here modeled introducing two parameters α and P, see eqn.(4). The solution of this differential equation of the first order with variables which can be separated has been derived, see eqn.(5). The application of this new solution to SN 2001el and SN 2001ay produces an acceptable agreement between theory and observations over the considered temporal interval of $\approx 60\text{d}$, see Figs. 1 and 2.
Figure 2: The V light curve of SN 2001ay (empty stars) in absolute magnitude, the theoretical curve as given by equation (3) when the radioactive decay of the isotope ^{56}Ni ($\tau = 8.757 \text{ d}$ or $T_{1/2} = 6.07 \text{ d}$, $k = -18.90$) was considered (full line), and the theoretical curve of the continuous production of the isotope ^{56}Ni ($\tau = 8.757 \text{ d}$ or $T_{1/2} = 6.07 \text{ d}$, $k = -18.90$, $P = 0.72 \times 10^{-2}$, $\alpha = 0.29$) (dashed line).

References

Received: October 1, 2013